论文标题
使用属性指导合成的神经架构搜索
Neural Architecture Search using Property Guided Synthesis
论文作者
论文摘要
在过去的几年中,神经建筑搜索(NAS)已成为深度学习社区中越来越重要的工具。尽管NAS最近取得了许多成功,但大多数现有方法在高度结构化的设计空间内运行,因此仅探索了神经体系结构的完整搜索空间的一小部分,同时还需要域专家的大量手动努力。在这项工作中,我们开发了在更大的设计空间中实现有效NAS的技术。为此,我们建议在程序属性的抽象搜索空间中执行NAS。我们的主要见解如下:(1)抽象搜索空间明显小于原始搜索空间,(2)具有相似程序属性的体系结构也具有相似的性能;因此,我们可以在抽象搜索空间中更有效地搜索。为了启用这种方法,我们还提出了一种新型的有效合成程序,该过程接受一组有希望的程序属性,并返回令人满意的神经体系结构。我们在进化框架内实施了$α$ nas的方法,该框架由程序属性指导。从Resnet-34型号开始,$α$ NAS可以在CIFAR-10上产生一个模型,而CIFAR-10的精度略有提高,但参数少96%。在Imagenet上,$α$ NAS能够改善视觉变压器(较少的拖失板和参数),Resnet-50(较少的拖失板,少14%)和有效网络(较少的拖失板和参数),而无需任何准确的降解。
In the past few years, neural architecture search (NAS) has become an increasingly important tool within the deep learning community. Despite the many recent successes of NAS, however, most existing approaches operate within highly structured design spaces, and hence explore only a small fraction of the full search space of neural architectures while also requiring significant manual effort from domain experts. In this work, we develop techniques that enable efficient NAS in a significantly larger design space. To accomplish this, we propose to perform NAS in an abstract search space of program properties. Our key insights are as follows: (1) the abstract search space is significantly smaller than the original search space, and (2) architectures with similar program properties also have similar performance; thus, we can search more efficiently in the abstract search space. To enable this approach, we also propose a novel efficient synthesis procedure, which accepts a set of promising program properties, and returns a satisfying neural architecture. We implement our approach, $α$NAS, within an evolutionary framework, where the mutations are guided by the program properties. Starting with a ResNet-34 model, $α$NAS produces a model with slightly improved accuracy on CIFAR-10 but 96% fewer parameters. On ImageNet, $α$NAS is able to improve over Vision Transformer (30% fewer FLOPS and parameters), ResNet-50 (23% fewer FLOPS, 14% fewer parameters), and EfficientNet (7% fewer FLOPS and parameters) without any degradation in accuracy.