论文标题

最佳的Horoball包装密度用于双曲线$ 3 $ - 空间

Optimal Horoball Packing Densities for Koszul-type tilings in Hyperbolic $3$-space

论文作者

Kozma, Robert T., Szirmai, Jenő

论文摘要

我们确定了$ \ Mathbb {h}^3 $中的Koszul-Type Coxeter Simplex Tilings的最佳Horoball包装密度。我们给出了一个由Busemann功能和对称组参数化的Horoball包装家庭,该组达到了简单的包装密度上限$ d_3(\ infty)= \ left(2 \ sqrt {3}λ\ \ left(\ frac {π} {π} Lobachevsky功能。

We determine the optimal horoball packing densities for the Koszul-type Coxeter simplex tilings in $\mathbb{H}^3$. We give a family of horoball packings parameterized by the Busemann function and symmetry group that achieve the simplicial packing density upper bound $d_3(\infty) = \left( 2 \sqrt{3} Λ\left( \frac{π}{3} \right) \right)^{-1} \approx 0.853276$ where $Λ$ is the Lobachevsky function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源