论文标题
用于求解非线性PDE的稀疏高斯工艺
Sparse Gaussian processes for solving nonlinear PDEs
论文作者
论文摘要
本文提出了一种基于稀疏高斯过程(SGP)的非线性偏微分方程(PDE)的有效数值方法。高斯工艺(GPS)已通过制定找到繁殖的内核希尔伯特空间(RKHS)以近似PDE溶液的问题进行了广泛的研究以解决PDE。近似的解在通过评估样品点不同顺序的衍生物产生的基本函数的跨度。但是,由于矩阵逆的立方计算顺序,GPS指定的RKHS可能会导致昂贵的计算负担。因此,我们猜测解决方案存在于“凝结”子空间上,该子空间可以实现相似的近似性能,并且我们提出了一种基于SGP的方法,以重新重新制定``凝结的子空间''中的优化问题。这大大减轻了计算负担,同时保持了理想的准确性。本文严格提出了此问题,并提供了错误分析和数值实验,以证明该方法的有效性。数值实验表明,使用相同数量的均匀样品,SGP方法将少于均匀样品的一半用作诱导点,并实现与GP方法相当的精度,从而显着降低了计算成本。 我们的贡献包括在使用SGP的``凝结了RKH的''condemed''子空间上提出非线性PDE问题,并提供了证明和严格的错误分析。此外,我们的方法可以被视为GP方法的扩展,以说明一般的积极的阳性半明确级别的核心。
This article proposes an efficient numerical method for solving nonlinear partial differential equations (PDEs) based on sparse Gaussian processes (SGPs). Gaussian processes (GPs) have been extensively studied for solving PDEs by formulating the problem of finding a reproducing kernel Hilbert space (RKHS) to approximate a PDE solution. The approximated solution lies in the span of base functions generated by evaluating derivatives of different orders of kernels at sample points. However, the RKHS specified by GPs can result in an expensive computational burden due to the cubic computation order of the matrix inverse. Therefore, we conjecture that a solution exists on a ``condensed" subspace that can achieve similar approximation performance, and we propose a SGP-based method to reformulate the optimization problem in the ``condensed" subspace. This significantly reduces the computation burden while retaining desirable accuracy. The paper rigorously formulates this problem and provides error analysis and numerical experiments to demonstrate the effectiveness of this method. The numerical experiments show that the SGP method uses fewer than half the uniform samples as inducing points and achieves comparable accuracy to the GP method using the same number of uniform samples, resulting in a significant reduction in computational cost. Our contributions include formulating the nonlinear PDE problem as an optimization problem on a ``condensed" subspace of RKHS using SGP, as well as providing an existence proof and rigorous error analysis. Furthermore, our method can be viewed as an extension of the GP method to account for general positive semi-definite kernels.