论文标题

GENISP:低光机认知的神经ISP

GenISP: Neural ISP for Low-Light Machine Cognition

论文作者

Morawski, Igor, Chen, Yu-An, Lin, Yu-Sheng, Dangi, Shusil, He, Kai, Hsu, Winston H.

论文摘要

在弱光条件下的对象检测仍然是一个具有挑战性但重要的问题,具有许多实际含义。最近的一些作品表明,在低光条件下,使用原始图像数据的对象检测器比使用传统ISP管道处理的图像数据更强大。为了提高低光条件下的检测性能,可以对检测器进行微调以使用原始图像数据或使用配对的低和正常光数据训练的专用低光神经管道以恢复和增强图像。但是,不同的摄像头传感器具有不同的光谱灵敏度和基于学习的模型,使用传感器特定颜色空间中的原始图像过程数据。因此,一旦受过训练,它们就不能保证对其他相机传感器的概括。我们建议通过为机器认知的最小神经ISP管道(名为GenISP)实现最小的神经ISP管道,以改善概括,该管道将颜色空间转换纳入独立于设备的颜色空间。我们还提出了一个由两个图像到参数模块实现的两阶段颜色处理,这些模块将尺寸尺寸的图像作为输入并回归全局颜色校正参数。此外,我们建议在预先训练的对象检测器的指导下训练我们提出的GENISP,并避免对图像感知质量进行假设,而不是优化机器认知的图像表示。在推论阶段,GenISP可以与任何对象检测器配对。我们进行了广泛的实验,以将我们的方法与基于外部任务的评估中的其他低光图像恢复和增强方法进行比较,并验证GenISP可以推广到看不见的传感器和对象检测器。最后,我们为带有46K边界框注释的7k原始图像的低光数据集提供了基于任务的基于未来的低光图像恢复和对象检测的基准测试。

Object detection in low-light conditions remains a challenging but important problem with many practical implications. Some recent works show that, in low-light conditions, object detectors using raw image data are more robust than detectors using image data processed by a traditional ISP pipeline. To improve detection performance in low-light conditions, one can fine-tune the detector to use raw image data or use a dedicated low-light neural pipeline trained with paired low- and normal-light data to restore and enhance the image. However, different camera sensors have different spectral sensitivity and learning-based models using raw images process data in the sensor-specific color space. Thus, once trained, they do not guarantee generalization to other camera sensors. We propose to improve generalization to unseen camera sensors by implementing a minimal neural ISP pipeline for machine cognition, named GenISP, that explicitly incorporates Color Space Transformation to a device-independent color space. We also propose a two-stage color processing implemented by two image-to-parameter modules that take down-sized image as input and regress global color correction parameters. Moreover, we propose to train our proposed GenISP under the guidance of a pre-trained object detector and avoid making assumptions about perceptual quality of the image, but rather optimize the image representation for machine cognition. At the inference stage, GenISP can be paired with any object detector. We perform extensive experiments to compare our method to other low-light image restoration and enhancement methods in an extrinsic task-based evaluation and validate that GenISP can generalize to unseen sensors and object detectors. Finally, we contribute a low-light dataset of 7K raw images annotated with 46K bounding boxes for task-based benchmarking of future low-light image restoration and object detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源