论文标题

内部自动等效性,尤其是单体类别

Inner autoequivalences in general and those of monoidal categories in particular

论文作者

Hofstra, Pieter, Karvonen, Martti

论文摘要

我们开发了任何两类对象的(扩展)内部自动等量的一般理论,将各向同性群的理论推广到2类别环境。我们展示了密集的子类别如何在存在二进制共同点的情况下使一个各向同性综合,从而统一了各种已知的一维结果,并在二维设置中提供了可拖动的计算工具。特别是,我们表明,单体类别的各向同性2组与其PICARD 2组相吻合,即其弱可逆物体上的2组。

We develop a general theory of (extended) inner autoequivalences of objects of any 2-category, generalizing the theory of isotropy groups to the 2-categorical setting. We show how dense subcategories let one compute isotropy in the presence of binary coproducts, unifying various known one-dimensional results and providing tractable computational tools in the two-dimensional setting. In particular, we show that the isotropy 2-group of a monoidal category coincides with its Picard 2-group, i.e., the 2-group on its weakly invertible objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源