论文标题
具有Neumann边界条件的非本地非线性PDE的深度学习近似
Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions
论文作者
论文摘要
非线性部分微分方程(PDE)用于在许多科学领域中建模动力学过程,从财务到生物学。在许多应用中,标准局部模型不足以准确地说明某些非本地现象,例如距离处的相互作用。为了正确捕获这些现象,非本地非线性非线性PDE模型经常在文献中使用。在本文中,我们提出了基于机器学习和PICARD迭代的两种数值方法,以大致求解非本地的非线性PDE。提出的基于机器学习的方法是先前在文献中引入的基于深度学习的分裂类型近似方法的扩展变体,并利用神经网络在解决方案的空间域的子集中提供近似解决方案。基于PICARD迭代的方法是先前在文献中引入的所谓完整历史递归多级PICARD近似方案的扩展变体,并为域的单个点提供了近似解决方案。两种方法都是无网状的,允许在高维度以Neumann边界条件为单位的非本地非线性PDE。在这两种方法中,通过(i)使用(i)使用反射随机过程的预期轨迹与PDE的解决方案(由Feynman-KAC公式给出)以及使用(ii给出的PLEANTE MONTE CARLO CARLO INTEMERTION来处理非元素术语)之间的对应关系(ii)来避免(i)避免了由于PDE的尺寸而引起的数值困难。我们评估了两种方法在物理和生物学中产生的五种不同PDE上的性能。在所有情况下,这些方法在短期时间内最多可产生良好的结果。我们的工作扩展了最近开发的方法来克服解决PDE的维度的诅咒。
Nonlinear partial differential equations (PDEs) are used to model dynamical processes in a large number of scientific fields, ranging from finance to biology. In many applications standard local models are not sufficient to accurately account for certain non-local phenomena such as, e.g., interactions at a distance. In order to properly capture these phenomena non-local nonlinear PDE models are frequently employed in the literature. In this article we propose two numerical methods based on machine learning and on Picard iterations, respectively, to approximately solve non-local nonlinear PDEs. The proposed machine learning-based method is an extended variant of a deep learning-based splitting-up type approximation method previously introduced in the literature and utilizes neural networks to provide approximate solutions on a subset of the spatial domain of the solution. The Picard iterations-based method is an extended variant of the so-called full history recursive multilevel Picard approximation scheme previously introduced in the literature and provides an approximate solution for a single point of the domain. Both methods are mesh-free and allow non-local nonlinear PDEs with Neumann boundary conditions to be solved in high dimensions. In the two methods, the numerical difficulties arising due to the dimensionality of the PDEs are avoided by (i) using the correspondence between the expected trajectory of reflected stochastic processes and the solution of PDEs (given by the Feynman-Kac formula) and by (ii) using a plain vanilla Monte Carlo integration to handle the non-local term. We evaluate the performance of the two methods on five different PDEs arising in physics and biology. In all cases, the methods yield good results in up to 10 dimensions with short run times. Our work extends recently developed methods to overcome the curse of dimensionality in solving PDEs.