论文标题
可概括图像分类的比较知识翻译
Comparison Knowledge Translation for Generalizable Image Classification
论文作者
论文摘要
深度学习最近在图像分类任务中取得了卓越的表现,这在很大程度上取决于大量注释。但是,现有深度学习模型的分类机制似乎与人类的识别机制形成鲜明对比。只需浏览一下对象的图像即使是未知类型的图像,人类就可以快速而精确地从大型图像中找到其他相同的类别对象,这些对象受益于各种对象的每日识别。在本文中,我们试图建立一个可概括的框架,该框架在图像分类任务中模仿人类的识别机制,希望在其他类别的注释的支持下改善看不见类别的分类性能。具体而言,我们研究了一项称为比较知识翻译(CKT)的新任务。鉴于一组完全标记的类别,CKT旨在将从标记类别学到的比较知识转化为一组新型类别。为此,我们提出了一个比较分类翻译网络(CCT-NET),该网络包括一个比较分类器和匹配的歧视器。设计比较分类器是为了分类两个图像是否属于同一类别,而匹配的歧视器以对抗性方式一起工作以确保分类结果是否与真相相匹配。详尽的实验表明,CCT-NET在目标类别上对看不见的类别和SOTA性能具有令人惊讶的概括能力。
Deep learning has recently achieved remarkable performance in image classification tasks, which depends heavily on massive annotation. However, the classification mechanism of existing deep learning models seems to contrast to humans' recognition mechanism. With only a glance at an image of the object even unknown type, humans can quickly and precisely find other same category objects from massive images, which benefits from daily recognition of various objects. In this paper, we attempt to build a generalizable framework that emulates the humans' recognition mechanism in the image classification task, hoping to improve the classification performance on unseen categories with the support of annotations of other categories. Specifically, we investigate a new task termed Comparison Knowledge Translation (CKT). Given a set of fully labeled categories, CKT aims to translate the comparison knowledge learned from the labeled categories to a set of novel categories. To this end, we put forward a Comparison Classification Translation Network (CCT-Net), which comprises a comparison classifier and a matching discriminator. The comparison classifier is devised to classify whether two images belong to the same category or not, while the matching discriminator works together in an adversarial manner to ensure whether classified results match the truth. Exhaustive experiments show that CCT-Net achieves surprising generalization ability on unseen categories and SOTA performance on target categories.