论文标题
公制空间中的本质上的静电段
Intrinsically quasi-isometric sections in metric spaces
论文作者
论文摘要
该注释是对大型几何形状的贡献。更确切地说,我们在度量空间中介绍了本质上的准静电分段,并研究了它们的特性:大规模的AHLFORS-DAVAVID规律性;遵循Cheeger理论,可以定义合适的集合,以获得凸度,并在$ \ mathbb {r} $或$ \ mathbb {c} $上作为这些部分的向量空间;然而,遵循Cheeger的想法,我们给出了这类部分的等价关系。在整个论文中,我们都使用基本的数学工具。
This note is a contribution to large scale geometry. More precisely, we introduce the intrinsically quasi-isometric sections in metric spaces and we investigate their properties: the Ahlfors-David regularity in large scale; following Cheeger theory, it is possible to define suitable sets in order to obtain convexity and being a vector space over $\mathbb{R}$ or $\mathbb{C}$ for these sections; yet, following Cheeger's idea, we give an equivalence relation for this class of sections. Throughout the paper, we use basic mathematical tools.