论文标题
Steam ++一个可扩展的端到端框架,用于在雾中开发物联网数据处理应用程序
STEAM++ An Extensible End-To-End Framework for Developing IoT Data Processing Applications in the Fog
论文作者
论文摘要
物联网应用程序通常依靠云计算服务来执行数据分析,例如过滤,聚合,分类,模式检测和预测。当应用于特定域时,物联网需要处理独特的约束。除了振动和电磁干扰等敌对环境外,导致故障,噪音和数据丢失外,工业工厂通常具有互联网访问限制或不可用,迫使我们设计独立的雾气和边缘计算解决方案。在这种情况下,我们提出了Steam ++,这是一个轻巧且可扩展的框架,用于网络边缘中的实时数据流处理和决策,针对硬件有限的设备,此外还提出了用于评估嵌入式IoT应用程序的微基准方法。在半导体行业的实际案例实验中,我们从值感测,处理和分析数据,检测相关事件,最后是将结果发布到仪表板上的整个数据流。平均而言,该应用程序消耗少于500KB RAM和CPU使用的1.0%,每秒处理高达239个数据包,并在通知事件时将输出数据大小降低到输入原始数据大小的14%。
IoT applications usually rely on cloud computing services to perform data analysis such as filtering, aggregation, classification, pattern detection, and prediction. When applied to specific domains, the IoT needs to deal with unique constraints. Besides the hostile environment such as vibration and electric-magnetic interference, resulting in malfunction, noise, and data loss, industrial plants often have Internet access restricted or unavailable, forcing us to design stand-alone fog and edge computing solutions. In this context, we present STEAM++, a lightweight and extensible framework for real-time data stream processing and decision-making in the network edge, targeting hardware-limited devices, besides proposing a micro-benchmark methodology for assessing embedded IoT applications. In real-case experiments in a semiconductor industry, we processed an entire data flow, from values sensing, processing and analyzing data, detecting relevant events, and finally, publishing results to a dashboard. On average, the application consumed less than 500kb RAM and 1.0% of CPU usage, processing up to 239 data packets per second and reducing the output data size to 14% of the input raw data size when notifying events.