论文标题

使用半分析方法的连续性方程和高斯混合模型的长期密度传播比较

Comparison of continuity equation and Gaussian mixture model for long-term density propagation using semi-analytical methods

论文作者

Sun, Pan, Colombo, Camilla, Trisolini, Mirko, Li, Shuang

论文摘要

本文比较了在高海拔和高面积与质量比率卫星长期传播的背景下,在2D相空间长期密度传播问题上进行了密度方程模型和高斯混合模型的连续演化。密度演化方程是一种纯数值和点式传播的方法,使用半分析方法在太阳辐射压力和地球填充性的影响下制定。与高斯混合模型的密度演化方程和蒙特卡洛技术不同,从前两个统计矩(即平均值和协方差矩阵)可以访问密度的分析计算,该计算与初始高斯密度分布相对应。对相位空间的长期密度传播问题给出了洞察力。证明了密度传播的效率和有效性,并在密度演化方程与高斯混合模型之间进行了比较,相对于标准的蒙特卡洛技术。

This paper compares the continuum evolution for density equation modelling and the Gaussian mixture model on the 2D phase space long-term density propagation problem in the context of high-altitude and high area-to-mass ratio satellite long-term propagation. The density evolution equation, a pure numerical and pointwise method for the density propagation, is formulated under the influence of solar radiation pressure and Earth's oblateness using semi-analytical methods. Different from the density evolution equation and Monte Carlo techniques, for the Gaussian mixture model, the analytical calculation of the density is accessible from the first two statistical moments (i.e., the mean and the covariance matrix) corresponding to each sub-Gaussian distribution for an initial Gaussian density distribution. An insight is given into the phase space long-term density propagation problem subject to nonlinear dynamics. The efficiency and validity of the density propagation are demonstrated and compared between the density evolution equation and the Gaussian mixture model with respect to standard Monte Carlo techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源