论文标题
用螺旋X射线绘制旋转的能量时间景观
Mapping the energy-time landscape of spins with helical X-rays
论文作者
论文摘要
揭示确定光学驱动旋转动力学的关键机制对于探测超快光 - 物质相互作用的基本性质至关重要,也是推动较小,更快且能节能的设备的未来技术。这项任务至关重要的是能够使用实验光谱工具来证明非平衡电子职业的潜在能量和自旋分辨动力学。在这项联合理论和实验工作中,我们证明了超快速螺旋依赖性软X射线吸收光谱(HXAS)允许在光激发后访问自旋,时间和能量特定的状态职业。我们将此方法应用于原型过渡金属铁磁钴,并在理论与实验之间找到令人信服的一致性。结构丰富的能量分解的旋转动力学揭示了这种材料中光激发和旋转轨道诱导的自旋翼型转变的微妙相互作用和特征时间尺度:在Fermi级别以下的能量窗口中集成的旋转力矩首先表现出超快的频率,随着激光脉搏的少量脉搏,在高度启动过程中,少数族携带者会增加少数派载体,而启动率高得出了启动量的启动,并在高度启动过程中,在高度下进行了启动。这项研究的结果证明了元素特定瞬态HXA的功能,将其作为识别和确定基本过程在光学驱动的旋转动力学中的作用的潜在新工具。
Unveiling the key mechanisms that determine optically driven spin dynamics is essential both to probe the fundamental nature of ultrafast light-matter interactions, but also to drive future technologies of smaller, faster, and more energy efficient devices. Essential to this task is the ability to use experimental spectroscopic tools to evidence the underlying energy- and spin-resolved dynamics of non-equilibrium electron occupations. In this joint theory and experimental work, we demonstrate that ultrafast helicity-dependent soft X-ray absorption spectroscopy (HXAS) allows access to spin-, time- and energy specific state occupation after optical excitation. We apply this method to the prototype transition metal ferromagnet cobalt and find convincing agreement between theory and experiment. The richly structured energy-resolved spin dynamics unveil the subtle interplay and characteristic time scales of optical excitation and spin-orbit induced spin-flip transitions in this material: the spin moment integrated in an energy window below the Fermi level first exhibits an ultrafast increase as minority carriers are excited by the laser pulse, before it is reduced as spin-flip process in highly localized, low energy states start to dominate. The results of this study demonstrate the power of element specific transient HXAS, placing it as a potential new tool for identifying and determining the role of fundamental processes in optically driven spin dynamics in magnetic materials.