论文标题
一般相对论磁性水力学中的波浪现象
Wave Phenomena In General Relativistic Magnetohydrodynamics
论文作者
论文摘要
在这里,我们研究了弯曲时空中一般相对论非抗性二阶二阶磁流体动力方程的一般相对论的波传播和稳定性。我们使用弛豫时间近似和Chapman-Enskog样梯度扩展来解决颗粒和反粒子系统的玻尔兹曼方程,以用于均衡分布函数,在电磁场中弯曲的时空中的二阶截断超出了二阶的截断。与全息计算〜\ cite {baier:2007ix}不同,我们表明粘性进化方程并不明确取决于时空的曲率。同样,我们已经在存在线性的度量扰动和各种模式的衍生分散关系的情况下测试了弯曲时空中二阶理论的因果关系和稳定性。有趣的是,我们发现重力模式与通常的磁性磁通模式在小波数限制中的耦合。此外,由于散装粘液液的重力,我们还会显示出其他非流动力模式。
Here we study the wave propagation and stability of general relativistic non-resistive dissipative second-order magnetohydrodynamic equations in curved space-time. We solve the Boltzmann equation for a system of particles and antiparticles using the relaxation time approximation and the Chapman-Enskog-like gradient expansion for the off-equilibrium distribution function, truncating beyond second-order in curved space-time in electromagnetic fields. Unlike holographic calculation~\cite{Baier:2007ix}, we show that the viscous evolution equations do not explicitly depend on the curvature of space-time. Also, we have tested the causality and stability of the second-order theory in curved space-time in the presence of linearised metric perturbation and derived dispersion relations for various modes. Interestingly, we found the coupling of gravitational modes with the usual magneto-sonic modes in the small wave-number limit. Also, we show additional non-hydrodynamical modes arise due to gravity for a bulk-viscous fluid.