论文标题

扩展类别和$ n $ exianged fuctors的表征

The category of extensions and a characterisation of $n$-exangulated functors

论文作者

Bennett-Tennenhaus, Raphael, Haugland, Johanne, Sandøy, Mads Hustad, Shah, Amit

论文摘要

添加剂类别在数学和相关学科中起着基本作用。给定配备了双性函数的添加剂类别,可以构建其扩展类别,该扩展类别编码重要的结构信息。我们研究扩展类别之间的函子与原始类别级别的官能相关。当相关类别是$ n $外观的时,这会导致$ n $外面函数的表征。 我们的方法使我们能够从$ 2 $分类的角度研究$ n $外观的类别。我们介绍了$ n $的自然转换,并使用扩展类别来表征它们。我们的特征使我们能够在$ 2 $ $ n $的$ N $类别类别和小型类别之间建立一个$ 2 $ - 功能。也证明了没有少量假设的类似结果。 我们采用我们的理论来产生各种$ n $外面的函数和自然转换的例子。尽管本文的动机源于代表理论和对$ n $外面类别的研究,但我们的结果广泛适用:只有几个只需配备Biaddive functor的添加剂类别,而没有额外的假设;可以通过赋予其拆分$ n $外面的结构来赋予其他类别来应用其他类别。

Additive categories play a fundamental role in mathematics and related disciplines. Given an additive category equipped with a biadditive functor, one can construct its category of extensions, which encodes important structural information. We study how functors between categories of extensions relate to those at the level of the original categories. When the additive categories in question are $n$-exangulated, this leads to a characterisation of $n$-exangulated functors. Our approach enables us to study $n$-exangulated categories from a $2$-categorical perspective. We introduce $n$-exangulated natural transformations and characterise them using categories of extensions. Our characterisations allow us to establish a $2$-functor between the $2$-categories of small $n$-exangulated categories and small exact categories. A similar result with no smallness assumption is also proved. We employ our theory to produce various examples of $n$-exangulated functors and natural transformations. Although the motivation for this article stems from representation theory and the study of $n$-exangulated categories, our results are widely applicable: several require only an additive category equipped with a biadditive functor with no extra assumptions; others can be applied by endowing an additive category with its split $n$-exangulated structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源