论文标题
随机非线性schrödinger方程在$ h^2(\ mathbb {r}^d)$中的适合性
The well-posedness of the stochastic nonlinear Schrödinger equations in $H^2(\mathbb{R}^d)$
论文作者
论文摘要
随机非线性schrödinger方程带有乘法噪声的库奇问题被视为幂类型,而噪声系数纯粹是虚构的数字。本文的主要目的是在$ h^2(\ mathbb {r}^d)$中构建经典解决方案。 Kato \ cite {K87,K89}的技术即使在随机方程中也可以很好地克服这一困难。
The Cauchy problem for the stochastic nonlinear Schrödinger equation with multiplicative noise is considered where the nonlinear term is of power type and the noise coefficients are purely imaginary numbers. The main purpose of this paper is to construct classical solutions in $H^2(\mathbb{R}^d)$ for the problem. The techniques of Kato \cite{K87,K89} work well in overcoming this difficulty even for the stochastic equations.