论文标题

用于不受约束的黑匣子二进制优化的变分量子算法:应用特征选择

Variational quantum algorithm for unconstrained black box binary optimization: Application to feature selection

论文作者

Zoufal, Christa, Mishmash, Ryan V., Sharma, Nitin, Kumar, Niraj, Sheshadri, Aashish, Deshmukh, Amol, Ibrahim, Noelle, Gacon, Julien, Woerner, Stefan

论文摘要

我们引入了一种差异量子算法来解决无约束的黑匣子二进制优化问题,即将目标函数作为黑匣子提供的问题。这与用于优化的量子算法的典型设置相反,在该设置中作为给定的二次不受约束的二进制优化问题提供经典的目标函数并映射到Pauli运算符的总和。此外,我们基于量子假想时间演变的收敛保证,为我们的方法提供理论理由。为了研究我们的算法及其潜在优势的性能,我们解决了一个具有挑战性的现实优化问题:特征选择。这是指选择用于构建预测模型(例如欺诈检测)的相关功能的子集的问题。最佳特征选择 - 按照通用损失函数进行配制时,几乎没有建造经典启发式方法的结构,从而主要产生“贪婪的方法”。这为(近期)量子算法留出了足够的空间,使其与经典的最先进方法竞争。我们将基于量子优化的特征选择算法(称为VARQFS)分别为具有20和59个输入功能(Qubits)的信用风险数据集构建预测模型,并分别使用基于量子硬件和基于张量的数值模拟来训练该模型。我们表明,与当今行业中使用的传统特征选择技术相比,量子方法在某些方面产生了竞争性,在某些方面的性能甚至更好。

We introduce a variational quantum algorithm to solve unconstrained black box binary optimization problems, i.e., problems in which the objective function is given as black box. This is in contrast to the typical setting of quantum algorithms for optimization where a classical objective function is provided as a given Quadratic Unconstrained Binary Optimization problem and mapped to a sum of Pauli operators. Furthermore, we provide theoretical justification for our method based on convergence guarantees of quantum imaginary time evolution. To investigate the performance of our algorithm and its potential advantages, we tackle a challenging real-world optimization problem: feature selection. This refers to the problem of selecting a subset of relevant features to use for constructing a predictive model such as fraud detection. Optimal feature selection -- when formulated in terms of a generic loss function -- offers little structure on which to build classical heuristics, thus resulting primarily in 'greedy methods'. This leaves room for (near-term) quantum algorithms to be competitive to classical state-of-the-art approaches. We apply our quantum-optimization-based feature selection algorithm, termed VarQFS, to build a predictive model for a credit risk data set with 20 and 59 input features (qubits) and train the model using quantum hardware and tensor-network-based numerical simulations, respectively. We show that the quantum method produces competitive and in certain aspects even better performance compared to traditional feature selection techniques used in today's industry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源