论文标题
Szekeres I类模型的重力熵
Gravitational Entropy in Szekeres Class I Models
论文作者
论文摘要
引力熵是一个难以捉摸的概念。已经提出了各种理论建议,最初是基于Penrose的Weyl曲率假设及其变化的。 Clifton,Ellis和Tavakol(CET)的最新提议通过定义了从吉布斯方程式的熵来考虑一种新方法,该方程是由有效的应激能量张量从“正方形根”代数分解出来的,对Bel-Robinson Tensor的“平方根”代数分解,最简单的无差异无差异与weylyls相关的weylyl to weylyl tensor。由于,到目前为止,所有重力熵建议都应用于高度限制性和对称的空间,因此我们在本文中探讨了CET的建议较低的类别(Szekeres I类模型),能够描述结构数量过度的coptions和voids $ cods $ andsim $ andsimp spats spatsials $ spatsials $ andsimp spats spats spatsials spats spatsials $ spatsials $ spatsials $ spats spatsials $ spatsials $ andsimp a andsym $ andsym $ andsimp spatsials $ andsimp spatsials $ andsimp。通过使用合适的协变量及其波动,我们发现CET熵产生的必要条件是密度和哈勃膨胀波动的乘积的负迹象。为了检查该理论结果的可行性,我们从数值上检查了两个在围绕中央球体空隙的密集区域的伸长区域的CET熵产生,所有这些都从最后一个散射时代的初始线性扰动中共同演变为当今的MPC大小CDM结构。我们表明,在最后散射结构生长以及确切的密度生长模式的确切空间位置,CET熵产生的所有时间都是阳性的。本文在结构形成的背景下,提供了重力熵建议的理想化最低(最健壮的)探针。
Gravitational entropy is an elusive concept. Various theoretical proposals have been presented, initially based on Penrose's Weyl Curvature Hypothesis, and variations of it. A more recent proposal by Clifton, Ellis, and Tavakol (CET) considered a novel approach by defining such entropy from a Gibbs equation constructed from an effective stress-energy tensor that emerges from the 'square root' algebraic decomposition of the Bel-Robinson tensor, the simplest divergence-less tensor related to the Weyl tensor. Since, so far all gravitational entropy proposals have been applied to highly restrictive and symmetric spacetimes, we probe in this paper the CET proposal for a class of much less idealized spactimes (the Szekeres class I models) capable of describing the joint evolution of arrays of arbitrary number of structures: overdensities and voids, all placed on selected spatial locations in an asymptotic $Λ$CDM backgound. By using suitable covariant variables and their fluctuations, we find the necessary and sufficient conditions for a positive CET entropy production to be a negative sign of the product of the density and Hubble expansion fluctuations. To examine the viability of this theoretical result we examine numerically the CET entropy production for two elongated over dense regions surrounding a central spheroidal void, all evolving jointly from initial linear perturbations at the last scattering era into present day Mpc-size CDM structures. We show that CET entropy production is positive for all times after last scattering at the precise spatial locations where structure growth occurs and where the exact density growing mode is dominant. The present paper provides the least idealized (and most physically robust) probe of a gravitational entropy proposal in the context of structure formation.