论文标题
量子猝灭后对称分辨的rényi熵的精确流体动力描述
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench
论文作者
论文摘要
我们通过量子普遍的流体动力学来研究对称分辨的Rényi熵的非平衡动力学,该气体是非相互互动的无旋转费用的,最近允许在非均匀淬火设置中获得非常准确的总纠缠结果。尽管我们的讨论对于使用量子广义流体动力学访问的任何淬火设置都是有效的,但我们重点介绍最初以两分性方式制备的量子气体的情况,随后让Hamiltonian跳跃。对于此系统,我们将对称性分辨的Rényi熵表征为时间$ t $的功能以及沿着不均匀配置文件的纠缠位置$ x $的功能。我们观察到一半系统的带电矩的渐近对数生长,以及对对称扇区之间熵的渐进式恢复,其偏离偏差与偏离的偏差与总熵的倒数正方形成正比。
We investigate the non-equilibrium dynamics of the symmetry-resolved Rényi entropies in a one-dimensional gas of non-interacting spinless fermions by means of quantum generalised hydrodynamics, which recently allowed to obtain very accurate results for the total entanglement in inhomogeneous quench settings. Although our discussion is valid for any quench setting accessible with quantum generalised hydrodynamics, we focus on the case of a quantum gas initially prepared in a bipartite fashion and subsequently let evolve unitarily with a hopping Hamiltonian. For this system, we characterise the symmetry-resolved Rényi entropies as function of time $t$ and of the entangling position $x$ along the inhomogeneous profile. We observe an asymptotic logarithmic growth of the charged moments at half system and an asymptotic restoration of equipartition of entropy among symmetry sectors with deviations which are proportional to the square of the inverse of the total entropy.