论文标题

对抗性混杂回归和不确定性测量,以分类米尔杨树中的异质临床MRI

Adversarial confound regression and uncertainty measurements to classify heterogeneous clinical MRI in Mass General Brigham

论文作者

Leming, Matthew, Das, Sudeshna, Im, Hyungsoon

论文摘要

神经影像学中的自动疾病检测有望提高放射科医生的诊断能力,但是经常收集的临床数据经常包含技术和人口统计学混杂因素,这些因素会导致数据在站点之间存在差异,并且与感兴趣的疾病有系统地相关,从而对诊断模型的鲁棒性产生负面影响。对诊断深度学习模型的迫切需要,该模型可以在这种不平衡的数据集上训练而不会受到这些混杂影响。在这项工作中,我们介绍了一种新颖的深度学习体系结构Mucran(多共同回归对抗网络),以培训有关临床大脑MRI的深度学习模型,同时回归人口统计学和技术混杂因素。我们使用了2019年之前从马萨诸塞州综合医院收集的17,076个临床T1轴向脑MRIS培训Mucran,并证明Mucran可以成功地回归大量临床数据中的主要混杂因素。我们还应用了一种方法来量化这些模型集合的不确定性,以自动排除AD检测中的分布数据。通过结合粘液和不确定性量化方法,我们在新收集的MGH数据(2019年后)和其他医院的数据中显示出一致且显着提高的AD检测准确性。 Mucran为基于深度学习的自动疾病检测提供了一种可普遍的方法。

Automated disease detection in neuroimaging holds promise to improve the diagnostic ability of radiologists, but routinely collected clinical data frequently contains technical and demographic confounding factors that cause data to both differ between sites and be systematically associated with the disease of interest, thus negatively affecting the robustness of diagnostic models. There is a critical need for diagnostic deep learning models that can train on such imbalanced datasets without being influenced by these confounds. In this work, we introduce a novel deep learning architecture, MUCRAN (Multi-Confound Regression Adversarial Network), to train a deep learning model on clinical brain MRI while regressing demographic and technical confounding factors. We trained MUCRAN using 17,076 clinical T1 Axial brain MRIs collected from Massachusetts General Hospital before 2019 and demonstrated that MUCRAN could successfully regress major confounding factors in the vast clinical data. We also applied a method for quantifying uncertainty across an ensemble of these models to automatically exclude out-of-distribution data in the AD detection. By combining MUCRAN and the uncertainty quantification method, we showed consistent and significant increases in the AD detection accuracy for newly collected MGH data (post-2019) and for data from other hospitals. MUCRAN offers a generalizable approach for heterogenous clinical data for deep-learning-based automatic disease detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源