论文标题
Invnorm:胃肠道内窥镜检查中对象检测的域概括
InvNorm: Domain Generalization for Object Detection in Gastrointestinal Endoscopy
论文作者
论文摘要
域的概括是计算机视觉中的一个具有挑战性的话题,尤其是在胃肠道内窥镜图像分析中。由于设备的限制和道德原因,通常使用相同品牌的传感器收集当前的开源数据集。不同品牌的设备和个体差异将显着影响模型的普遍性。因此,为了解决GI(胃肠道)内窥镜检查中的概括问题,我们提出了一个多域GI数据集和一个称为Invnorm(可逆归一化)的轻插入式块,该块可以在任何结构中实现更好的概括性能。先前的DG(域概括)方法无法实现可逆转换,这将导致一些误导性的增强。此外,这些模型更有可能导致医学道德问题。我们的方法利用归一流的流程来达到可逆和可解释的样式归一化以解决该问题。 Invnorm的有效性已在各种任务上证明,包括GI识别,GI对象检测和自然图像识别。
Domain Generalization is a challenging topic in computer vision, especially in Gastrointestinal Endoscopy image analysis. Due to several device limitations and ethical reasons, current open-source datasets are typically collected on a limited number of patients using the same brand of sensors. Different brands of devices and individual differences will significantly affect the model's generalizability. Therefore, to address the generalization problem in GI(Gastrointestinal) endoscopy, we propose a multi-domain GI dataset and a light, plug-in block called InvNorm(Invertible Normalization), which could achieve a better generalization performance in any structure. Previous DG(Domain Generalization) methods fail to achieve invertible transformation, which would lead to some misleading augmentation. Moreover, these models would be more likely to lead to medical ethics issues. Our method utilizes normalizing flow to achieve invertible and explainable style normalization to address the problem. The effectiveness of InvNorm is demonstrated on a wide range of tasks, including GI recognition, GI object detection, and natural image recognition.