论文标题
为战略混合工人提供的最佳信息提供
Optimal Information Provision for Strategic Hybrid Workers
论文作者
论文摘要
我们研究了一位战略中央规划师的信息提供问题,他们可以公开发出有关不确定的感染风险参数的信号。信号传导会导致对参数的最新信念,然后代理就远程工作还是面对面的工作做出均衡选择。规划师为每个不确定参数的每个实现都保留了一组理想的结果,并试图最大程度地提高代理为真实参数选择可接受的结果的概率。我们区分无状态和国家目标。在前者中,理想的结果集并不随风险参数的函数而变化,而在后者中。对于无状态的目标,我们减少了问题,以最大程度地提高诱导平均信念的可能性,而平均信念则是可根据一组理想的结果计算的间隔。我们得出了最佳信号机制,并表明它将参数域在最多两个间隔中分配到根据间隔特定分布产生的信号。对于状态案件,我们考虑了一种实际相关的情况,在这种情况下,计划者可以实施面对面的工作能力限制,随着风险参数的增加而逐渐变得更加严格。我们表明,可以通过求解线性程序来获得此情况的最佳信号机制。我们在数值上验证了使用我们的信息设计相对于没有信息和完整信息基准的信息设计来验证获得理想结果的改进。
We study the problem of information provision by a strategic central planner who can publicly signal about an uncertain infectious risk parameter. Signalling leads to an updated public belief over the parameter, and agents then make equilibrium choices on whether to work remotely or in-person. The planner maintains a set of desirable outcomes for each realization of the uncertain parameter and seeks to maximize the probability that agents choose an acceptable outcome for the true parameter. We distinguish between stateless and stateful objectives. In the former, the set of desirable outcomes does not change as a function of the risk parameter, whereas in the latter it does. For stateless objectives, we reduce the problem to maximizing the probability of inducing mean beliefs that lie in intervals computable from the set of desirable outcomes. We derive the optimal signalling mechanism and show that it partitions the parameter domain into at most two intervals with the signals generated according to an interval-specific distribution. For the stateful case, we consider a practically relevant situation in which the planner can enforce in-person work capacity limits that progressively get more stringent as the risk parameter increases. We show that the optimal signalling mechanism for this case can be obtained by solving a linear program. We numerically verify the improvement in achieving desirable outcomes using our information design relative to no information and full information benchmarks.