论文标题
长度空间上的无lipschitz空间几乎是正方形的,但永远不会平方
The Lipschitz-free space over length space is locally almost square but never almost square
论文作者
论文摘要
我们证明,每当M是一个长度空间时,公制空间M上的无Lipschitz空间几乎是局部正方形的。因此,无Lipschitz的空间在本地几乎是正方形的,并且仅当它具有Daugavet属性时。我们还表明,无lipschitz的空间永远不会是正方形的。
We prove that the Lipschitz-free space over a metric space M is locally almost square whenever M is a length space. Consequently, the Lipschitz-free space is locally almost square if and only if it has the Daugavet property. We also show that a Lipschitz-free space is never almost square.