论文标题

多Freq-LDPY:Python中局部差异隐私下的多频估计

Multi-Freq-LDPy: Multiple Frequency Estimation Under Local Differential Privacy in Python

论文作者

Arcolezi, Héber H., Couchot, Jean-François, Gambs, Sébastien, Palamidessi, Catuscia, Zolfaghari, Majid

论文摘要

本文介绍了在局部差异隐私(LDP)保证下进行多频率估计的多Freq-Ldpy Python软件包。 LDP是通过Google,Apple和Microsoft等大型科技公司的多个现实世界实施来实现本地隐私的黄金标准。 LDP的主要应用是频率(或直方图)估计,其中聚合器估计了每个值的次数。呈现的软件包提供了最先进的解决方案和最佳解决方案协议的易于使用的软件包,用于频率估算:单个属性(即构建块),多个属性(即多维数据),多个集合(即纵向数据)以及两个属性/集合/集合。 Multi-Freq-Ldpy建立在良好的Numpy软件包(Python中科学计算的事实标准)和快速执行的NUMBA软件包上。这些特征在本文中用四个工作示例进行了描述和说明。该软件包是开源的,并通过MIT许可证通过GitHub(https://github.com/hharcolezi/multi-freq-ldpy)公开获得,并且可以通过PYPI(https://pypi.org/project/project/project/multi-freq-lldpy/)安装。

This paper introduces the multi-freq-ldpy Python package for multiple frequency estimation under Local Differential Privacy (LDP) guarantees. LDP is a gold standard for achieving local privacy with several real-world implementations by big tech companies such as Google, Apple, and Microsoft. The primary application of LDP is frequency (or histogram) estimation, in which the aggregator estimates the number of times each value has been reported. The presented package provides an easy-to-use and fast implementation of state-of-the-art solutions and LDP protocols for frequency estimation of: single attribute (i.e., the building blocks), multiple attributes (i.e., multidimensional data), multiple collections (i.e., longitudinal data), and both multiple attributes/collections. Multi-freq-ldpy is built on the well-established Numpy package -- a de facto standard for scientific computing in Python -- and the Numba package for fast execution. These features are described and illustrated in this paper with four worked examples. This package is open-source and publicly available under an MIT license via GitHub (https://github.com/hharcolezi/multi-freq-ldpy) and can be installed via PyPI (https://pypi.org/project/multi-freq-ldpy/).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源