论文标题
测试有关光子质量和Lorentz-Poincaré对称性违规的Ampère-Maxwell法律与MMS多飞机运动物数据
Testing the Ampère-Maxwell law on the photon mass and Lorentz-Poincaré symmetry violation with MMS multi-spacecraft data
论文作者
论文摘要
我们通过寻找与Ampère-Maxwell法律的偏差来调查电磁性扩展理论的可能证据。光子是解释宇宙的主要信使,是标准模型(SM)中唯一的自由质量粒子。实际上,偏差可能是由于SM扩展(SME)中的De Broglie-Proca(DBP)理论的光子质量或Lorentz对称性违规(LSV)所致,也是由于Born-Infeld,Heisenberg-Euler的理论中的非线性。以此目的,我们分析了磁层多尺度任务的六年数据,该数据是一个四卫星星座,主要越过磁重新连接的湍流区域,并在太阳风之外收集了大约95美元的下载数据。我们从太阳风,磁石和磁层区域检查了380万个数据点。在少数情况下,对于四个航天器绘制的最高时间分辨率爆发数据和最佳的四面体配置,已经发现了偏差($ 2.2 \%$ in Modulus,$ 4.8 \%$ $ $ $ $ $ $ $ $ $ 2. 45.2 \%在极端低质量范围内)。这些偏差可能是由于未算出的实验错误引起的,或者不太可能是由于非Maxwellian贡献的可能性,为此我们推断了DBP和SME案例的相关参数。可能,我们处于非专业任务的可测量性边界。我们讨论我们的实验结果(光子质量的上限为$ 2.1 \ times 10^{ - 51} $ kg,以及LSV参数$ | \ vec {k}^{k}^{\ rm af} | $ 6 \ 6 \ times 10^times 10^{ - 9} $ 9} $ M $^{ - 1} $)
We investigate possible evidence from Extended Theories of Electro-Magnetism by looking for deviations from the Ampère-Maxwell law. The photon, main messenger for interpreting the universe, is the only free massless particle in the Standard-Model (SM). Indeed, the deviations may be due to a photon mass for the de Broglie-Proca (dBP) theory or the Lorentz Symmetry Violation (LSV) in the SM Extension (SME), but also to non-linearities from theories as of Born-Infeld, Heisenberg-Euler. With this aim, we have analysed six years of data of the Magnetospheric Multi-Scale mission, which is a four-satellite constellation, crossing mostly turbulent regions of magnetic reconnection and collecting about $95\%$ of the downloaded data, outside the solar wind. We examined 3.8 million data points from the solar wind, magnetosheath, and magnetosphere regions. In a minority of cases, for the highest time resolution burst data and optimal tetrahedron configurations drawn by the four spacecraft, deviations have been found ($2.2\%$ in modulus and $4.8\%$ in Cartesian components for all regions, but raising up in the solar wind alone to $20.8\%$ in modulus and $29.7\%$ in Cartesian components and up to 45.2\% in the extreme low-mass range). The deviations might be due to unaccounted experimental errors or, less likely, to non-Maxwellian contributions, for which we have inferred the related parameters for the dBP and SME cases. Possibly, we are at the boundaries of measurability for non-dedicated missions. We discuss our experimental results (upper limit of photon mass of $2.1 \times 10^{-51}$ kg, and of the LSV parameter $|\vec{k}^{\rm AF}|$ of $6 \times 10^{-9}$ m$^{-1}$), as the deviations in the solar wind, versus more stringent but model-dependent limits.