论文标题
信仰:带有层次任务图的几乎没有图形分类
FAITH: Few-Shot Graph Classification with Hierarchical Task Graphs
论文作者
论文摘要
几乎没有图形分类旨在预测图形的类,给定每个类标记的图形有限。为了应对标签稀缺性的瓶颈,最近的作品建议将几乎没有记录的学习框架结合起来,以适应具有有限标签图的快速适应图。具体而言,这些作品建议在不同的元训练任务中积累元知识,然后通过不相交标签集将这种元知识概括为目标任务。但是,现有方法通常忽略元训练任务之间的任务相关性,同时独立对待它们。然而,这种任务相关性可以将模型概括提高到目标任务以提高分类性能。另一方面,由于大量的元训练任务中的复杂组件,因此使用任务相关性仍然不足。为了解决这个问题,我们提出了一种新颖的几弹学习框架信仰,该信仰通过在不同的粒度上构建层次结构的任务图来捕获任务相关性。然后,我们进一步设计了一种基于损失的抽样策略,以选择具有更多相关类别的任务。此外,提出了特定于任务的分类器来利用学习的任务相关性进行几次分类。对四个普遍的几示图分类数据集进行了广泛的实验,证明了信仰比其他最先进的基线的优越性。
Few-shot graph classification aims at predicting classes for graphs, given limited labeled graphs for each class. To tackle the bottleneck of label scarcity, recent works propose to incorporate few-shot learning frameworks for fast adaptations to graph classes with limited labeled graphs. Specifically, these works propose to accumulate meta-knowledge across diverse meta-training tasks, and then generalize such meta-knowledge to the target task with a disjoint label set. However, existing methods generally ignore task correlations among meta-training tasks while treating them independently. Nevertheless, such task correlations can advance the model generalization to the target task for better classification performance. On the other hand, it remains non-trivial to utilize task correlations due to the complex components in a large number of meta-training tasks. To deal with this, we propose a novel few-shot learning framework FAITH that captures task correlations via constructing a hierarchical task graph at different granularities. Then we further design a loss-based sampling strategy to select tasks with more correlated classes. Moreover, a task-specific classifier is proposed to utilize the learned task correlations for few-shot classification. Extensive experiments on four prevalent few-shot graph classification datasets demonstrate the superiority of FAITH over other state-of-the-art baselines.