论文标题
悬空感知的实体对齐与混合高阶接近
Dangling-Aware Entity Alignment with Mixed High-Order Proximities
论文作者
论文摘要
我们研究知识图(kgs)中的悬空意识实体对齐,这是一个毫无争议但重要的问题。由于不同的公斤自然是由不同的实体组构建的,因此kg通常包含一些悬挂的实体,这些实体无法在其他公斤中找到对应物。因此,悬空意识的实体对准比先前的研究只是忽略悬空实体的传统实体对齐方式更现实。我们提出了一个在悬空的实体对齐中使用混合高阶接近的框架。我们的框架在最近的邻居子图中利用局部高阶接近度,也利用了嵌入空间中的全局高阶接近度,用于悬空检测和实体对齐。具有两个评估设置的广泛实验表明,我们的框架更精确地检测到悬空的实体,并更好地对齐可匹配的实体。进一步的调查表明,我们的框架可以减轻悬挂感知实体一致性的中心问题。
We study dangling-aware entity alignment in knowledge graphs (KGs), which is an underexplored but important problem. As different KGs are naturally constructed by different sets of entities, a KG commonly contains some dangling entities that cannot find counterparts in other KGs. Therefore, dangling-aware entity alignment is more realistic than the conventional entity alignment where prior studies simply ignore dangling entities. We propose a framework using mixed high-order proximities on dangling-aware entity alignment. Our framework utilizes both the local high-order proximity in a nearest neighbor subgraph and the global high-order proximity in an embedding space for both dangling detection and entity alignment. Extensive experiments with two evaluation settings shows that our framework more precisely detects dangling entities, and better aligns matchable entities. Further investigations demonstrate that our framework can mitigate the hubness problem on dangling-aware entity alignment.