论文标题
ahlfors-david在公制空间内本质上的对称截面的规律性
Ahlfors-David regularity of intrinsically quasi-symmetric sections in metric spaces
论文作者
论文摘要
我们介绍了公制空间中本质上的对称部分的定义,并证明了此类部分的AHLFORS-DAVID规律性。我们遵循Le Donne和作者的最新结果,在Franchi,Serapioni和Serra Cassano的意义上,我们概括了本质上Lipschitz图的概念。我们通过将注意力集中在图形属性上而不是地图上来做到这一点。
We introduce a definition of intrinsically quasi-symmetric sections in metric spaces and we prove the Ahlfors-David regularity for this class of sections. We follow a recent result by Le Donne and the author where we generalize the notion of intrinsically Lipschitz graphs in the sense of Franchi, Serapioni and Serra Cassano. We do this by focusing our attention on the graph property instead of the map one.