论文标题
贝叶斯检测到跟踪系统的系统,以进行健壮的视觉对象跟踪和半监督模型学习
A Bayesian Detect to Track System for Robust Visual Object Tracking and Semi-Supervised Model Learning
论文作者
论文摘要
对象跟踪是视觉识别任务中的基本问题之一,近年来取得了重大改进。这些成就通常伴随着巨大的硬件消费和连续标签的昂贵人工努力的价格。缺少可靠的跟踪成分是通过对网络结构和半监督学习间歇性标记框架进行最小化的修改来实现性能。在本文中,我们将这些问题纳入由神经网络输出参数为参数的贝叶斯跟踪和检测框架中。在我们的框架中,随着多对象的动力学和网络检测不确定性,跟踪和检测过程以概率方式制定。通过我们的公式,我们提出了一种基于粒子滤波器的近似采样算法,用于跟踪对象状态估计。基于我们的粒子滤波器推理算法,半监督的学习算法用于通过变异推理在间歇性标记的帧上学习跟踪网络。在我们的实验中,我们提供了基于MAP和基于概率的检测测量值,以与非bayesian溶液之间的算法进行比较。我们还在M2CAI16-Tool-Locations数据集上培训了一个半监督的跟踪网络,并将我们的结果与完全标记的框架上的监督学习进行了比较。
Object tracking is one of the fundamental problems in visual recognition tasks and has achieved significant improvements in recent years. The achievements often come with the price of enormous hardware consumption and expensive labor effort for consecutive labeling. A missing ingredient for robust tracking is achieving performance with minimal modification on network structure and semi-supervised learning intermittent labeled frames. In this paper, we ad-dress these problems in a Bayesian tracking and detection framework parameterized by neural network outputs. In our framework, the tracking and detection process is formulated in a probabilistic way as multi-objects dynamics and network detection uncertainties. With our formulation, we propose a particle filter-based approximate sampling algorithm for tracking object state estimation. Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames by variational inference. In our experiments, we provide both mAP and probability-based detection measurements for comparison between our algorithm with non-Bayesian solutions. We also train a semi-supervised tracking network on M2Cai16-Tool-Locations Dataset and compare our results with supervised learning on fully labeled frames.