论文标题
由于极端事件而导致的基础设施损害自动损害的工程深度学习方法
Engineering deep learning methods on automatic detection of damage in infrastructure due to extreme events
论文作者
论文摘要
本文使用深度学习方法来处理2D图像,介绍了极端事件中自动结构损伤检测(SDD)的一些全面实验研究。在第一项研究中,使用152层剩余网络(RESNET)来对八个SDD任务中的多个类进行分类,其中包括识别场景水平,损坏水平,材料类型等。所提出的重新系统在每个任务中都可以实现高精度,而损害的位置则无法识别。在第二项研究中,现有的重新连接和分割网络(U-NET)合并为新的管道,级联网络,用于对结构损害进行分类和定位。结果表明,与仅使用分割网络相比,损伤检测的准确性显着提高。在第三和第四研究中,端到端网络被开发和测试,作为直接检测裂纹和剥落的新解决方案,并在最近的大地震的图像集合中进行散布。提议的网络之一可以在各种尺度和分辨率下的所有测试图像中获得高于67.6%的精度,并显示其对这些无人类检测任务的鲁棒性。作为一项初步的现场研究,我们应用了提出的方法来检测经过测试以研究其进行性崩溃性能的混凝土结构中的损害。实验表明,使用深度学习方法自动检测结构损伤的这些解决方案是可行且有希望的。培训数据集和代码将在本文发表后向公众提供。
This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, material types, etc. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67.6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper.