论文标题

改善了使用混合对象检测网络的汽车雷达的方向估计和检测

Improved Orientation Estimation and Detection with Hybrid Object Detection Networks for Automotive Radar

论文作者

Ulrich, Michael, Braun, Sascha, Köhler, Daniel, Niederlöhner, Daniel, Faion, Florian, Gläser, Claudius, Blume, Holger

论文摘要

本文介绍了新型混合体系结构,这些混合体系结合了基于网格和点的处理,以改善基于雷达对象检测网络的检测性能和方向估计。纯粹基于网格的检测模型在输入点云的鸟眼视图(BEV)投影上运行。这些方法通过离散的网格分辨率损失了详细信息的损失。这特别适用于雷达对象检测,其中相对粗糙的网格分辨率通常用于解释雷达点云的稀疏性。相反,基于点的模型不会受到此问题的影响,因为它们在没有离散化的情况下处理点云。但是,它们通常表现出比基于网格的方法更差的检测性能。 我们表明,基于点的模型可以在网格渲染之前提取邻居功能,利用点的确切相对位置。这对于随后的基于网格的卷积检测主链具有重大好处。在公共Nuscenes数据集的实验中,我们的混合体系结构在检测性能方面取得了改进(汽车类的地图比次要雷达的次雷达提交高19.7%)和方向估计值(11.5%的相对方向改善)比以前文献的网络相比。

This paper presents novel hybrid architectures that combine grid- and point-based processing to improve the detection performance and orientation estimation of radar-based object detection networks. Purely grid-based detection models operate on a bird's-eye-view (BEV) projection of the input point cloud. These approaches suffer from a loss of detailed information through the discrete grid resolution. This applies in particular to radar object detection, where relatively coarse grid resolutions are commonly used to account for the sparsity of radar point clouds. In contrast, point-based models are not affected by this problem as they process point clouds without discretization. However, they generally exhibit worse detection performances than grid-based methods. We show that a point-based model can extract neighborhood features, leveraging the exact relative positions of points, before grid rendering. This has significant benefits for a subsequent grid-based convolutional detection backbone. In experiments on the public nuScenes dataset our hybrid architecture achieves improvements in terms of detection performance (19.7% higher mAP for car class than next-best radar-only submission) and orientation estimates (11.5% relative orientation improvement) over networks from previous literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源