论文标题

KP-I方程的规律性低适合性:分散式案例

Low regularity well-posedness for KP-I equations: the dispersion-generalized case

论文作者

Sanwal, Akansha, Schippa, Robert

论文摘要

我们在$ \ mathbb {r}^2 $中证明了分散式kadomtsev-petviashvili i方程的新良好结果,该方程将经典的kp-i方程与第五阶KP-i方程联系起来。对于足够强大的分散,我们在$ l^2(\ mathbb {r}^2)$中显示了全球适应性。为此,我们将共鸣和横向注意事项与Strichartz估计值和非线性织布(Whitney Normis)结合在一起。此外,我们证明,对于小分散,无法通过PICARD迭代来解决方程。在这种情况下,我们使用额外的频率依赖时间定位。

We prove new well-posedness results for dispersion-generalized Kadomtsev--Petviashvili I equations in $\mathbb{R}^2$, which family links the classical KP-I equation with the fifth order KP-I equation. For strong enough dispersion, we show global well-posedness in $L^2(\mathbb{R}^2)$. To this end, we combine resonance and transversality considerations with Strichartz estimates and a nonlinear Loomis--Whitney inequality. Moreover, we prove that for small dispersion, the equations cannot be solved via Picard iteration. In this case, we use an additional frequency dependent time localization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源