论文标题

cabibbo用抑制的分支分数的测量损失$ d^{+} \ to k^{+} k^{ - }π^{+}π^{0} $ and $ d _ {(s)}^{+}^{+}^{+}

Measurement of the branching fractions for Cabibbo-suppressed decays $D^{+}\to K^{+} K^{-}π^{+}π^{0}$ and $D_{(s)}^{+}\to K^{+}π^{-}π^{+}π^{0}$ at Belle

论文作者

Belle Collaboration, Li, L. K., Schwartz, A. J., Kinoshita, K., Won, E., Aihara, H., Said, S. Al, Asner, D. M., Atmacan, H., Aulchenko, V., Aushev, T., Ayad, R., Babu, V., Bahinipati, S., Belous, K., Bennett, J., Bessner, M., Bhardwaj, V., Bilka, T., Bobrov, A., Bodrov, D., Bonvicini, G., Borah, J., Bozek, A., Bračko, M., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Červenkov, D., Chang, P., Chen, A., Cheon, B. G., Cho, H. E., Cho, K., Cho, S. -J., Choi, S. -K., Choi, Y., Choudhury, S., Cinabro, D., Cunliffe, S., Das, S., Dash, N., De Nardo, G., De Pietro, G., Dhamija, R., Di Capua, F., Doležal, Z., Dong, T. V., Dossett, D., Epifanov, D., Frey, A., Fulsom, B. G., Garg, R., Gaur, V., Garmash, A., Giri, A., Goldenzweig, P., Graziani, E., Greenwald, D., Gu, T., Guan, Y., Gudkova, K., Hadjivasiliou, C., Hayasaka, K., Hayashii, H., Herrmann, D., Hou, W. -S., Hsu, C. -L., Inami, K., Ishikawa, A., Itoh, R., Iwasaki, M., Jacobs, W. W., Jia, S., Jin, Y., Kalita, D., Kaliyar, A. B., Kang, K. H., Kawasaki, T., Kiesling, C., Kim, C. H., Kim, D. Y., Kim, K. -H., Kim, K. T., Kim, Y. -K., Kodyš, P., Konno, T., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Krokovny, P., Kuhr, T., Kumar, M., Kumar, R., Kumara, K., Kuzmin, A., Kwon, Y. -J., Lai, Y. -T., Lam, T., Laurenza, M., Lee, S. C., Li, J., Li, Y., Li, Y. B., Gioi, L. Li, Libby, J., Lieret, K., Liventsev, D., Martini, A., Masuda, M., Matsuda, T., Matvienko, D., Maurya, S. K., Meier, F., Merola, M., Metzner, F., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Moon, H. K., Nakao, M., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Nisar, N. K., Nishida, S., Ono, H., Oskin, P., Pakhlov, P., Pakhlova, G., Pardi, S., Park, H., Park, S. -H., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Pestotnik, R., Piilonen, L. E., Podobnik, T., Prencipe, E., Prim, M. T., Rostomyan, A., Rout, N., Russo, G., Sahoo, D., Sandilya, S., Sangal, A., Santelj, L., Savinov, V., Schnell, G., Schueler, J., Schwanda, C., Seino, Y., Senyo, K., Sevior, M. E., Shapkin, M., Sharma, C., Shiu, J. -G., Simon, F., Singh, J. B., Sokolov, A., Solovieva, E., Starič, M., Stottler, Z. S., Sumihama, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Uchida, M., Uglov, T., Uno, K., Uno, S., Ushiroda, Y., Usov, Y., van Tonder, R., Varner, G., Varvell, K. E., Vossen, A., Waheed, E., Wang, E., Wang, M. -Z., Wang, X. L., Watanuki, S., Werbycka, O., Wiechczynski, J., Yabsley, B. D., Yan, W., Yang, S. B., Ye, H., Yelton, J., Yin, J. H., Yuan, C. Z., Zhang, Z. P., Zhilich, V., Zhukova, V.

论文摘要

我们介绍了分支分数的测量值,即单一cabibbo抑制的衰减$ d^+\ to k^{+} k^{ - }π^{+}π^{0} $ and $ d_s^{+} {+} \ to k^{+}+} fo基于980 $ {\ rm fb}^{ - rm fb}^{ - rm fb}^{ - 1} $ collle实验记录的数据的$ {+}π^{+}π^{+}π^{+}π^{+}π^{+}π^{+}π^{+}π^{ - 1} $ collle实验记录的数据的数据的$}我们测量这些模式相对于Cabibbo最佳模式$ D^{+} \ to K^{ - }π^{+}π^{+}π^{0} $和$ d_S^{+} {+} {+}我们的分支分数比率为$ b(d^{+} \至k^{+} k^{ - }π^{+}π^{+}π^{0})/b(d^{+} \ to k^{ - } { - }π^{+}π^{+}π^{+}+}+}+}+}+}+pm pm pm 0.26)\%$,$ b(d^{+} \ to k^{+}π^{ - }π^{+}π^{0} {0})/b(d^{+} \ to k^{ - } - } - }π^{+}π^{+}π^{+}π^{+}π^{+} {0.11^pm pm pm pm pm 0.03)\%$,和$ b(d_s^{+} \ to k^{+}π^{ - }π^{+}π^{0})/b(d_s^{+} \ to K^{+} {+} 0.51)\%$,不确定性分别是统计和系统的。第二个值对应于$(5.83 \ pm 0.42)\ times \ tan^4θ_c$,其中$θ_c$是cabibbo angle;该值大于其他测得的分支分数比,用于双重抑制的魅力衰减,使其衰变。将这些结果乘以$ b(d^{+} \ tok^{ - }π^{+}π^{+}π^{0})$和$ b(d_s^{+} \ t to k^{+} k^{ - } k^{ - }+}+^}+^{+ $ b(d^{+} \ to k^{+} k^{ - }π^{+}π^{0})=(7.08 \ pm 0.08 \ pm 0.16 \ pm 0.20 \ pm 0.20)\ times10^{ - 3} k^{+}π^{ - }π^{+}π^{0})=(1.05 \ pm 0.07 \ pm 0.02 \ pm 0.03)\ times10^{ - 3} $,and $ b(d_s^{+} (9.44 \ pm 0.34 \ pm 0.28 \ pm 0.32)\ times10^{ - 3} $,其中第三个不确定性是由于归一化模式的分支分数所致。前两个结果与当前的世界平均值相一致,但更精确。最后的结果是该分支部分的首次测量。

We present measurements of the branching fractions for the singly Cabibbo-suppressed decays $D^+\to K^{+}K^{-}π^{+}π^{0}$ and $D_s^{+}\to K^{+}π^{-}π^{+}π^{0}$, and the doubly Cabibbo-suppressed decay $D^{+}\to K^{+}π^{-}π^{+}π^{0}$, based on 980 ${\rm fb}^{-1}$ of data recorded by the Belle experiment at the KEKB $e^{+}e^{-}$ collider. We measure these modes relative to the Cabibbo-favored modes $D^{+}\to K^{-}π^{+}π^{+}π^{0}$ and $D_s^{+}\to K^{+}K^{-}π^{+}π^{0}$. Our results for the ratios of branching fractions are $B(D^{+}\to K^{+}K^{-}π^{+}π^{0})/B(D^{+}\to K^{-}π^{+}π^{+}π^{0}) = (11.32 \pm 0.13 \pm 0.26)\%$, $B(D^{+}\to K^{+}π^{-}π^{+}π^{0})/B(D^{+}\to K^{-}π^{+}π^{+}π^{0}) = (1.68 \pm 0.11\pm 0.03)\%$, and $B(D_s^{+}\to K^{+}π^{-}π^{+}π^{0})/B(D_s^{+}\to K^{+}K^{-}π^{+}π^{0}) = (17.13 \pm 0.62 \pm 0.51)\%$, where the uncertainties are statistical and systematic, respectively. The second value corresponds to $(5.83\pm 0.42)\times\tan^4θ_C$, where $θ_C$ is the Cabibbo angle; this value is larger than other measured ratios of branching fractions for a doubly Cabibbo-suppressed charm decay to a Cabibbo-favored decay. Multiplying these results by world average values for $B(D^{+}\to K^{-}π^{+}π^{+}π^{0})$ and $B(D_s^{+}\to K^{+}K^{-}π^{+}π^{0})$ yields $B(D^{+}\to K^{+}K^{-}π^{+}π^{0})= (7.08\pm 0.08\pm 0.16\pm 0.20)\times10^{-3}$, $B(D^{+}\to K^{+}π^{-}π^{+}π^{0})= (1.05\pm 0.07\pm 0.02\pm 0.03)\times10^{-3}$, and $B(D_s^{+}\to K^{+}π^{-}π^{+}π^{0}) = (9.44\pm 0.34\pm 0.28\pm 0.32)\times10^{-3}$, where the third uncertainty is due to the branching fraction of the normalization mode. The first two results are consistent with, but more precise than, the current world averages. The last result is the first measurement of this branching fraction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源