论文标题
全球渐近收敛观察者
A Global Asymptotic Convergent Observer for SLAM
论文作者
论文摘要
本文研究了SLAM算法的全球收敛问题,该问题面临拓扑障碍。这是因为态度动力学的状态空间是在不可汇总的歧管上定义的:特殊的正交组三个so(3)。因此,本文提出了一个基于梯度的新型混合观察者,以克服这些拓扑障碍。 Lyapunov稳定性定理用于证明所提出算法的全球渐近收敛性。最后,对两个模拟进行了比较分析,以评估所提出的方案的性能,并证明所提出的混合观察者对平滑观察者的优越性。
This paper examines the global convergence problem of SLAM algorithms, an issue that faces topological obstructions. This is because the state-space of attitude dynamics is defined on a non-contractible manifold: the special orthogonal group of order three SO(3). Therefore, this paper presents a novel, gradient-based hybrid observer to overcome these topological obstacles. The Lyapunov stability theorem is used to prove the globally asymptotic convergence of the proposed algorithm. Finally, comparative analyses of two simulations were conducted to evaluate the performance of the proposed scheme and to demonstrate the superiority of the proposed hybrid observer to a smooth observer.