论文标题

核心完整的有限状态抽象,用于验证随机系统

Robustly Complete Finite-State Abstractions for Verification of Stochastic Systems

论文作者

Meng, Yiming, Liu, Jun

论文摘要

在本文中,我们专注于由非线性随机差方程建模的离散时间随机系统,并提出了可靠的抽象来验证概率线性时间性时间规格。当前的文献着重于为随机动力学开发声音抽象技术而不会扰动。但是,到目前为止,声音性仅用于保留某些类型的时间逻辑规范的满意度。我们提出了建设性有限状态抽象,以验证更通用的非线性随机系统的一般ω领时概率满意度。我们没有从概率衡量标准的拓扑视图中分析概率性能,而不是施加稳定性假设。这样的抽象既声音又大致完成。也就是说,给定一个具体的离散时间随机系统和对该系统的任意小L1扰动,存在一个有限状态的马尔可夫链的家族,其一组满意度的概率包含原始系统的集合,同时由稍微扰动的系统包含。一个直接的结果是,鉴于概率线性时间规范,在抽象系统的获胜/丢失区域中初始化可以保证对原始系统的满意/不满意。我们做出了一个有趣的观察结果,即与确定性案例不同,点质量(Dirac)扰动无法实现稳健的完整性的目的。

In this paper, we focus on discrete-time stochastic systems modelled by nonlinear stochastic difference equations and propose robust abstractions for verifying probabilistic linear temporal specifications. The current literature focuses on developing sound abstraction techniques for stochastic dynamics without perturbations. However, soundness thus far has only been shown for preserving the satisfaction probability of certain types of temporal-logic specification. We present constructive finite-state abstractions for verifying probabilistic satisfaction of general ω-regular linear-time properties of more general nonlinear stochastic systems. Instead of imposing stability assumptions, we analyze the probabilistic properties from the topological view of metrizable space of probability measures. Such abstractions are both sound and approximately complete. That is, given a concrete discrete-time stochastic system and an arbitrarily small L1-perturbation of this system, there exists a family of finite-state Markov chains whose set of satisfaction probabilities contains that of the original system and meanwhile is contained by that of the slightly perturbed system. A direct consequence is that, given a probabilistic linear-time specification, initializing within the winning/losing region of the abstraction system can guarantee a satisfaction/dissatisfaction for the original system. We make an interesting observation that, unlike the deterministic case, point-mass (Dirac) perturbations cannot fulfill the purpose of robust completeness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源