论文标题

如何选择特征以改善改变道路的预测性能:一项荟萃分析

How to choose features to improve prediction performance in lane-changing intention: A meta-analysis

论文作者

Gu, Ruifeng

论文摘要

车道变化是一种基本的驾驶行为,与各种类型的碰撞高度相关,例如后端碰撞,侧叶碰撞和角度碰撞以及交通事故崩溃的风险增加。这项研究调查了不同特征类别的有效性在改变车道的意图预测中。已经选择了与改变车道的意图预测有关的研究,遵循严格的标准。然后,使用荟萃分析来评估不同特征类别合并在改变巷的意图中的有效性,而且还捕获了异质性,效果大小组合和发布偏见。根据荟萃分析和回顾的研究论文,结果表明,使用来自不同类型的输入特征会导致不同的性能。与环境甚至驱动程序组合输入类型相比,车辆输入类型在改变车道的意图,预测方面具有更好的性能。最后,根据本文的发现提出了一些潜在的未来研究方向。

Lane-change is a fundamental driving behavior and highly associated with various types of collisions, such as rear-end collisions, sideswipe collisions, and angle collisions and the increased risk of a traffic crash. This study investigates effectiveness of different features categories combination in lane-changing intention prediction. Studies related to lane-changing intention prediction have been selected followed by strict standards. Then the meta-analysis was employed to not only evaluate the effectiveness of different features categories combination in lane-changing intention but also capture heterogeneity, effect size combination, and publication bias. According to the meta-analysis and reviewed research papers, results indicate that using input features from different types can lead to different performances. And vehicle input type has a better performance in lane-changing intention, prediction, compared with environment or even driver combination input type. Finally, some potential future research directions are proposed based on the findings of the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源