论文标题

通过准二阶,局部参数化优化的合同量子本质量的加速收敛

Accelerated Convergence of Contracted Quantum Eigensolvers through a Quasi-Second-Order, Locally Parameterized Optimization

论文作者

Smart, Scott E., Mazziotti, David A.

论文摘要

合同的量子本素(CQE)通过在量子计算机上求解与2电子空间(CSE)的2电子空间(CSE)的整合(或收缩),从而找到了多电子Schrödinger方程的解决方案。当应用于CSE(ACSE)的抗炎性部分时,CQE迭代优化了波函数,相对于一般产品ANSATZ的两体指数单位变换,可以准确地求解Schrödinger方程。在这项工作中,我们通过经典优化理论的工具加速了CQE及其波函数ANSATZ的收敛性。通过将CQE算法视为局部参数空间中的优化,我们可以应用准二级优化技术,例如准牛顿方法或非线性结合梯度方法。实际上,这些算法导致波函数向ACSE溶液的超线性收敛。收敛加速度很重要,因为它既可以最大程度地减少近期中等规模量子(NISQ)计算机上噪声的积累,又可以在未来的耐故障量子设备上实现高度准确的溶液。我们演示了与减少成本考虑有关的算法以及一些有关的启发式实现,并将其与其他常见方法(例如变异量子本素层)以及CQE的Fermionic-Fermionic-Fermionic编码形式进行了比较。

A contracted quantum eigensolver (CQE) finds a solution to the many-electron Schrödinger equation by solving its integration (or contraction) to the 2-electron space -- a contracted Schrödinger equation (CSE) -- on a quantum computer. When applied to the anti-Hermitian part of the CSE (ACSE), the CQE iterations optimize the wave function with respect to a general product ansatz of two-body exponential unitary transformations that can exactly solve the Schrödinger equation. In this work, we accelerate the convergence of the CQE and its wavefunction ansatz via tools from classical optimization theory. By treating the CQE algorithm as an optimization in a local parameter space, we can apply quasi-second-order optimization techniques, such as quasi-Newton approaches or non-linear conjugate gradient approaches. Practically these algorithms result in superlinear convergence of the wavefunction to a solution of the ACSE. Convergence acceleration is important because it can both minimize the accumulation of noise on near-term intermediate-scale quantum (NISQ) computers and achieve highly accurate solutions on future fault-tolerant quantum devices. We demonstrate the algorithm, as well as some heuristic implementations relevant for cost-reduction considerations, comparisons with other common methods such as variational quantum eigensolvers, and a fermionic-encoding-free form of the CQE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源