论文标题
通过对基线风险进行与治疗分配相互作用的基线风险,预测个性化的治疗效果
Individualized treatment effect was predicted best by modeling baseline risk in interaction with treatment assignment
论文作者
论文摘要
目的:比较基于风险的不同方法以最佳预测治疗效果。方法:我们使用平均治疗效果的不同假设模拟了RCT数据,基线预后指数(PI),其与治疗的相互作用的形状(无,线性,二次或非单调)以及治疗相关危害的幅度(无独立或无独立的PI)。我们预测了绝对益处:具有恒定相对治疗效果的模型;在PI的四分之一中分层;模型,包括与PI处理的线性相互作用;模型包括与PI的限制性立方样条(RCS)转化的治疗相互作用;使用Akaike的信息标准的自适应方法。我们使用均方根误差以及歧视和校准的措施来评估预测性能。结果:线性交流模型在许多模拟方案中显示出最佳或接近最佳的性能(n = 4,250名患者; 〜785事件)。 RCS模型对于与恒定治疗效果的强非线性偏差非常最佳,尤其是当样本量更大时(n = 17,000)。自适应方法还需要更大的样本量。这些发现在Gusto-I试验中进行了说明。结论:应考虑基线风险与治疗分配之间的相互作用以改善治疗效应的预测。
Objective: To compare different risk-based methods for optimal prediction of treatment effects. Methods: We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk (PI), the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the PI). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the PI; models including a linear interaction of treatment with the PI; models including an interaction of treatment with a restricted cubic spline (RCS) transformation of the PI; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit. Results: The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N=4,250 patients; ~ 785 events). The RCS-model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N=17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial. Conclusion: An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions.