论文标题

通过对基线风险进行与治疗分配相互作用的基线风险,预测个性化的治疗效果

Individualized treatment effect was predicted best by modeling baseline risk in interaction with treatment assignment

论文作者

Rekkas, Alexandros, Rijnbeek, Peter R., Kent, David M., Steyerberg, Ewout W., van Klaveren, David

论文摘要

目的:比较基于风险的不同方法以最佳预测治疗效果。方法:我们使用平均治疗效果的不同假设模拟了RCT数据,基线预后指数(PI),其与治疗的相互作用的形状(无,线性,二次或非单调)以及治疗相关危害的幅度(无独立或无独立的PI)。我们预测了绝对益处:具有恒定相对治疗效果的模型;在PI的四分之一中分层;模型,包括与PI处理的线性相互作用;模型包括与PI的限制性立方样条(RCS)转化的治疗相互作用;使用Akaike的信息标准的自适应方法。我们使用均方根误差以及歧视和校准的措施来评估预测性能。结果:线性交流模型在许多模拟方案中显示出最佳或接近最佳的性能(n = 4,250名患者; 〜785事件)。 RCS模型对于与恒定治疗效果的强非线性偏差非常最佳,尤其是当样本量更大时(n = 17,000)。自适应方法还需要更大的样本量。这些发现在Gusto-I试验中进行了说明。结论:应考虑基线风险与治疗分配之间的相互作用以改善治疗效应的预测。

Objective: To compare different risk-based methods for optimal prediction of treatment effects. Methods: We simulated RCT data using diverse assumptions for the average treatment effect, a baseline prognostic index of risk (PI), the shape of its interaction with treatment (none, linear, quadratic or non-monotonic), and the magnitude of treatment-related harms (none or constant independent of the PI). We predicted absolute benefit using: models with a constant relative treatment effect; stratification in quarters of the PI; models including a linear interaction of treatment with the PI; models including an interaction of treatment with a restricted cubic spline (RCS) transformation of the PI; an adaptive approach using Akaike's Information Criterion. We evaluated predictive performance using root mean squared error and measures of discrimination and calibration for benefit. Results: The linear-interaction model displayed optimal or close-to-optimal performance across many simulation scenarios with moderate sample size (N=4,250 patients; ~ 785 events). The RCS-model was optimal for strong non-linear deviations from a constant treatment effect, particularly when sample size was larger (N=17,000). The adaptive approach also required larger sample sizes. These findings were illustrated in the GUSTO-I trial. Conclusion: An interaction between baseline risk and treatment assignment should be considered to improve treatment effect predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源