论文标题
单位磁盘覆盖算法的实验覆盖了大量点
Experiments with Unit Disk Cover Algorithms for Covering Massive Pointsets
论文作者
论文摘要
给定飞机中的$ n $点集,单位磁盘盖(UDC)问题要求计算覆盖点所需的最小单位磁盘数量以及磁盘的放置。这个问题是NP-HARD,在过去的三十年中设计了几种近似算法。在本文中,我们已经设计并通过实验比较了其中一些算法在大量点上的实践性能。目的是研究哪种算法快速运行,并在实践中提供良好的近似值。 我们为UDC提供了一种简单的$ 7 $ - AppRximation算法,该算法在$ O(n)$预期的时间内运行,并使用$ o(s)$ o(s)$ s $,其中$ s $表示生成的封面的大小。在我们的实验中,事实证明这是所有最快的。我们还提出了两种启发式方法,以减少它产生的盖子的大小,而不会减慢它的速度。 据我们所知,这是在实验上比较涵盖算法的第一部作品。使用大量点(以百万计的顺序)与他们进行实验,阐明了它们的实际用途。我们通过github -https://github.com/ghoshanirban/unitdiskcoveralgorithms共享工程算法,以在几何优化领域进行更广泛的用途和未来的研究。
Given a set of $n$ points in the plane, the Unit Disk Cover (UDC) problem asks to compute the minimum number of unit disks required to cover the points, along with a placement of the disks. The problem is NP-hard and several approximation algorithms have been designed over the last three decades. In this paper, we have engineered and experimentally compared practical performances of some of these algorithms on massive pointsets. The goal is to investigate which algorithms run fast and give good approximation in practice. We present a simple $7$-approximation algorithm for UDC that runs in $O(n)$ expected time and uses $O(s)$ extra space, where $s$ denotes the size of the generated cover. In our experiments, it turned out to be the speediest of all. We also present two heuristics to reduce the sizes of covers generated by it without slowing it down by much. To our knowledge, this is the first work that experimentally compares geometric covering algorithms. Experiments with them using massive pointsets (in the order of millions) throw light on their practical uses. We share the engineered algorithms via GitHub - https://github.com/ghoshanirban/UnitDiskCoverAlgorithms for broader uses and future research in the domain of geometric optimization.