论文标题

Autofi:通过几何自我监督学习迈向自动WiFi人类感测

AutoFi: Towards Automatic WiFi Human Sensing via Geometric Self-Supervised Learning

论文作者

Yang, Jianfei, Chen, Xinyan, Zou, Han, Wang, Dazhuo, Xie, Lihua

论文摘要

WiFi传感技术在各种传感器之间在智能家居中表现出了优势,其具有成本效益和隐私的优点。它由从WiFi信号和高级机器学习模型中提取的通道状态信息(CSI)授权,以分析CSI中的运动模式。已经提出了许多基于学习的模型针对多种应用程序,但它们严重遭受了环境依赖的困扰。尽管已经提出了域适应方法来解决此问题,但在新的适应算法的环境中收集高质量,细分和平衡的CSI样品并不实际,但是可以轻松收集随机接合的CSI样品。 {\ color {black}在本文中,我们首先探讨了如何从这些低质量的CSI样本中学习一个健壮的模型,并提出了Autofi,并提出了一种基于新颖的几何学自我监督的注释效率的WIFI传感模型用户定义的任务,这是在WiFi传感中实现交叉任务转移的第一项工作。 Autofi是在一对Atheros WiFi AP上实施的,以进行评估。 Autofi将知识从随机收集的CSI样本转移到人体步态识别中,并实现最先进的表现。此外,我们使用公共数据集模拟了交叉任务转移,以进一步证明其交叉任务学习能力。对于UT-HAR和WIDAR数据集,Autofi在没有任何事先培训的情况下就可以在活动识别和手势识别方面取得令人满意的结果。我们认为,Autofi在没有任何开发人员参与的情况下朝着自动wifi传感迈出了巨大的一步。

WiFi sensing technology has shown superiority in smart homes among various sensors for its cost-effective and privacy-preserving merits. It is empowered by Channel State Information (CSI) extracted from WiFi signals and advanced machine learning models to analyze motion patterns in CSI. Many learning-based models have been proposed for kinds of applications, but they severely suffer from environmental dependency. Though domain adaptation methods have been proposed to tackle this issue, it is not practical to collect high-quality, well-segmented and balanced CSI samples in a new environment for adaptation algorithms, but randomly-captured CSI samples can be easily collected. {\color{black}In this paper, we firstly explore how to learn a robust model from these low-quality CSI samples, and propose AutoFi, an annotation-efficient WiFi sensing model based on a novel geometric self-supervised learning algorithm.} The AutoFi fully utilizes unlabeled low-quality CSI samples that are captured randomly, and then transfers the knowledge to specific tasks defined by users, which is the first work to achieve cross-task transfer in WiFi sensing. The AutoFi is implemented on a pair of Atheros WiFi APs for evaluation. The AutoFi transfers knowledge from randomly collected CSI samples into human gait recognition and achieves state-of-the-art performance. Furthermore, we simulate cross-task transfer using public datasets to further demonstrate its capacity for cross-task learning. For the UT-HAR and Widar datasets, the AutoFi achieves satisfactory results on activity recognition and gesture recognition without any prior training. We believe that the AutoFi takes a huge step toward automatic WiFi sensing without any developer engagement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源