论文标题
从不完整的测量中深入学习量子纠缠
Deep learning of quantum entanglement from incomplete measurements
论文作者
论文摘要
物理系统中存在的纠缠的量化对于基本研究和许多尖端应用至关重要。当前,实现此目标需要有关系统的先验知识或非常苛刻的实验程序,例如全州层析成像或集体测量。在这里,我们证明,通过采用神经网络,我们可以量化纠缠程度,而无需了解量子状态的完整描述。我们的方法允许使用一组不完整的局部测量值直接量化量子相关性。尽管使用了未采样的测量结果,但我们达到的定量误差的数量级高于最先进的量子断层扫描。此外,我们采用了使用独家模拟数据训练的网络实现了这一结果。最后,我们得出了一种基于卷积网络输入的方法,该方法可以从各种测量场景中接受数据,并在某种程度上独立于测量设备执行。
The quantification of the entanglement present in a physical system is of para\-mount importance for fundamental research and many cutting-edge applications. Currently, achieving this goal requires either a priori knowledge on the system or very demanding experimental procedures such as full state tomography or collective measurements. Here, we demonstrate that by employing neural networks we can quantify the degree of entanglement without needing to know the full description of the quantum state. Our method allows for direct quantification of the quantum correlations using an incomplete set of local measurements. Despite using undersampled measurements, we achieve a quantification error of up to an order of magnitude lower than the state-of-the-art quantum tomography. Furthermore, we achieve this result employing networks trained using exclusively simulated data. Finally, we derive a method based on a convolutional network input that can accept data from various measurement scenarios and perform, to some extent, independently of the measurement device.