论文标题
户外单眼估计:研究评论
Outdoor Monocular Depth Estimation: A Research Review
论文作者
论文摘要
深度估计是一项重要的任务,用于计算机视觉的各种方法和应用。虽然传统的估算深度方法基于深度线索,并且需要特定的设备,例如立体声摄像机和根据所使用的方法配置输入,但当前时间的焦点是单个源或单眼,深度估计。在这些深度学习方法中,卷积神经网络的最新发展以及经典方法的整合导致了深度估计问题的许多进步。室外深度估计或野外深度估计的问题是一个几乎没有研究的研究领域。在本文中,我们概述了开放研究中存在的可用数据集,深度估计方法,研究工作,趋势,挑战和机遇。据我们所知,没有公开可用的调查工作提供户外深度估计技术和研究范围的全面集合,这使我们的工作成为希望进入这一研究领域的人们的重要贡献。
Depth estimation is an important task, applied in various methods and applications of computer vision. While the traditional methods of estimating depth are based on depth cues and require specific equipment such as stereo cameras and configuring input according to the approach being used, the focus at the current time is on a single source, or monocular, depth estimation. The recent developments in Convolution Neural Networks along with the integration of classical methods in these deep learning approaches have led to a lot of advancements in the depth estimation problem. The problem of outdoor depth estimation, or depth estimation in wild, is a very scarcely researched field of study. In this paper, we give an overview of the available datasets, depth estimation methods, research work, trends, challenges, and opportunities that exist for open research. To our knowledge, no openly available survey work provides a comprehensive collection of outdoor depth estimation techniques and research scope, making our work an essential contribution for people looking to enter this field of study.