论文标题
网络,面板和其他结果矩阵的异质治疗效果
Heterogeneous Treatment Effects for Networks, Panels, and other Outcome Matrices
论文作者
论文摘要
我们对一个实验的治疗效果分布感兴趣,该实验将单位随机分配给治疗,但对成对单位的结果进行了测量。例如,我们可能会衡量参加小额信贷计划的家庭之间的风险分享联系,工人与暴露于贸易冲击的公司之间的就业关系,或者从竞标者到分配给拍卖格式的项目。当社会互动,市场外部性或分配给相同处理的单位之间存在社交互动,市场外部性或其他溢出时,这种双重随机实验设计可能是合适的。或者它可以描述给研究人员提供的天然或准实验。在本文中,我们提出了一种新的经验策略,以比较与每种处理相关的结果矩阵的特征值。我们的建议基于Fréchet-Hoeffding边界的新矩阵类似物,该界限在标准理论中起着关键作用。我们首先使用此结果来绑定治疗效果的分布。然后,我们提出了一个新的分位数处理效应矩阵类似物,该效应由特征值的差异给出。我们称这种模拟光谱治疗效果。
We are interested in the distribution of treatment effects for an experiment where units are randomized to a treatment but outcomes are measured for pairs of units. For example, we might measure risk sharing links between households enrolled in a microfinance program, employment relationships between workers and firms exposed to a trade shock, or bids from bidders to items assigned to an auction format. Such a double randomized experimental design may be appropriate when there are social interactions, market externalities, or other spillovers across units assigned to the same treatment. Or it may describe a natural or quasi experiment given to the researcher. In this paper, we propose a new empirical strategy that compares the eigenvalues of the outcome matrices associated with each treatment. Our proposal is based on a new matrix analog of the Fréchet-Hoeffding bounds that play a key role in the standard theory. We first use this result to bound the distribution of treatment effects. We then propose a new matrix analog of quantile treatment effects that is given by a difference in the eigenvalues. We call this analog spectral treatment effects.