论文标题

POCD:半静态场景中的概率对象级变化检测和体积映射

POCD: Probabilistic Object-Level Change Detection and Volumetric Mapping in Semi-Static Scenes

论文作者

Qian, Jingxing, Chatrath, Veronica, Yang, Jun, Servos, James, Schoellig, Angela P., Waslander, Steven L.

论文摘要

保持最新的地图以反映现场的最新变化非常重要,尤其是在涉及在延长环境中操作的机器人重复遍历的情况。未发现的变化可能会导致地图质量恶化,导致定位不佳,操作效率低下和机器人丢失。体积方法,例如截断的签名距离功能(TSDF),由于其实时生产密集且详细的地图,迅速获得了吸引力,尽管随着时间的推移随着时间的流逝而变化的地图更新仍然是一个挑战。我们提出了一个框架,该框架引入了一种新颖的概率对象状态表示,以跟踪对象姿势在半静态场景中的变化。该表示为每个对象共同对平稳性评分和TSDF变更度量进行建模。同时加入几何信息和语义信息的贝叶斯更新规则被得出以实现一致的在线地图维护。为了与最先进的方法一起广泛评估我们的方法,我们在仓库环境中发布了一个新颖的现实数据集。我们还评估了公共Toycar数据集。我们的方法优于半静态环境重建质量的最先进方法。

Maintaining an up-to-date map to reflect recent changes in the scene is very important, particularly in situations involving repeated traversals by a robot operating in an environment over an extended period. Undetected changes may cause a deterioration in map quality, leading to poor localization, inefficient operations, and lost robots. Volumetric methods, such as truncated signed distance functions (TSDFs), have quickly gained traction due to their real-time production of a dense and detailed map, though map updating in scenes that change over time remains a challenge. We propose a framework that introduces a novel probabilistic object state representation to track object pose changes in semi-static scenes. The representation jointly models a stationarity score and a TSDF change measure for each object. A Bayesian update rule that incorporates both geometric and semantic information is derived to achieve consistent online map maintenance. To extensively evaluate our approach alongside the state-of-the-art, we release a novel real-world dataset in a warehouse environment. We also evaluate on the public ToyCar dataset. Our method outperforms state-of-the-art methods on the reconstruction quality of semi-static environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源