论文标题

通过轻型狄拉克中微子门户网站冻结暗物质

Freeze-in Dark Matter via Light Dirac Neutrino Portal

论文作者

Biswas, Anirban, Borah, Debasish, Das, Nayan, Nanda, Dibyendu

论文摘要

我们提出了一个场景,由于标准模型(SM)和暗区域颗粒之间存在光线(DM),因此可以在非热中生成暗物质(DM)。 SM由三个右手中微子($ν_r$),一个Dirac Fermion DM候选者($ψ$)和一个复杂的标量($ ϕ $)最小化,在不间断的$ \ mathbb {z} _4 $对称性下,在SM SM Smplelets下进行Sm Sm Smmetlets,在Sm Sm Sm Smplets的情况下进行了非平衡的转换。虽然DM和$ν_r$耦合被认为是微小的,以便在非热或冻结方案中,但根据其Higgs门户耦合的强度,可以在热或非热中生产$ ϕ $。我们考虑这两种可能性,并通过冷冻机制找出所得的DM丰度,以根据Planck 2018数据来限制模型参数。由于产生DM的交互也会产生相对论$ν_r$,因此我们检查了对有效的相对论自由度$δ{\ rm n} _ {\ rm eff} $的增强贡献,以了解现有界限以及未来的灵敏度。我们还从结构形成要求中检查了此类冻结DM的自由流长度的严格约束。这样的约束可以将DM质量排除在$ \ Mathcal {o}(100 \,{\ rm kev})$中,以使$δ{\ rm n} _ {\ rm n} _ {\ rm eff} \ leq \ leq \ leq \ leq \ mathcal {o}(o}(o)该最小模型的可能扩展可能会导致可观察到的$δ{\ rm n} _ {\ rm eff} $,可以在下一代实验中进行探测。

We propose a scenario where dark matter (DM) can be generated non-thermally due to the presence of a light Dirac neutrino portal between the standard model (SM) and dark sector particles. The SM is minimally extended by three right handed neutrinos ($ν_R$), a Dirac fermion DM candidate ($ψ$) and a complex scalar ($ϕ$), transforming non-trivially under an unbroken $\mathbb{Z}_4$ symmetry while being singlets under the SM gauge group. While DM and $ν_R$ couplings are considered to be tiny in order to be in the non-thermal or freeze-in regime, $ϕ$ can be produced either thermally or non-thermally depending upon the strength of its Higgs portal coupling. We consider both these possibilities and find out the resulting DM abundance via freeze-in mechanism to constrain the model parameters in the light of Planck 2018 data. Since the interactions producing DM also produces relativistic $ν_R$, we check the enhanced contribution to the effective relativistic degrees of freedom $Δ{\rm N}_{\rm eff}$ in view of existing bounds as well as future sensitivities. We also check the stringent constraints on free-streaming length of such freeze-in DM from structure formation requirements. Such constraints can rule out DM mass all the way up to $\mathcal{O}(100 \, {\rm keV})$ keeping the $Δ{\rm N}_{\rm eff} \leq \mathcal{O}(10^{-3})$, out of reach from near future experiments. Possible extensions of this minimal model can lead to observable $Δ{\rm N}_{\rm eff}$ which can be probed at next generation experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源