论文标题

完美的张量超线程

Perfect tensor hyperthreads

论文作者

Harper, Jonathan

论文摘要

位线程是全息纠缠熵(EE)的Ryu-takyanagi公式的双重描述,可以解释为将量子信息蒸馏到不同边界区域之间的铃铛对集合中的蒸馏。在本文中,我们讨论了对超线程的概括,该概括可以将两个以上的边界区域连接到导致丰富而多样化的凸面程序。通过建模多种超线程对完美张量的EE的贡献,我们认为该框架可能有助于我们开始探测全息系统的多部分纠缠。此外,我们证明了如何使用该技术来理解全息熵锥的不平等现象,并可能提供解决锁定问题的途径。

Bit threads, a dual description of the Ryu-Takyanagi formula for holographic entanglement entropy (EE), can be interpreted as a distillation of the quantum information to a collection of Bell pairs between different boundary regions. In this article we discuss a generalization to hyperthreads which can connect more than two boundary regions leading to a rich and diverse class of convex programs. By modeling the contributions of different species of hyperthreads to the EEs of perfect tensors we argue that this framework may be useful for helping us to begin to probe the multipartite entanglement of holographic systems. Furthermore, we demonstrate how this technology can potentially be used to understand holographic entropy cone inequalities and may provide an avenue to address issues of locking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源