论文标题
欧几里得沙漏的可提取纠缠
Extractable entanglement from a Euclidean hourglass
论文作者
论文摘要
我们先前提出,可以从欧几里得沙漏几何形状上的分区函数中获得跨平面表面的纠缠。在这里,我们将处方扩展到保形场理论中的球形纠缠表面。我们使用处方在CFT的熵二维的熵中评估日志术语,在四个维度中的共构耦合标量和四个维度的Maxwell字段。对于麦克斯韦,我们重现了Soni和Trivedi获得的可提取熵。我们以此为证据表明,沙漏处方为评估量子场理论中可提取的熵提供了一种欧几里得技术。
We previously proposed that entanglement across a planar surface can be obtained from the partition function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a CFT in two dimensions, a conformally-coupled scalar in four dimensions, and a Maxwell field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi. We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating extractable entropy in quantum field theory.