论文标题

时空模拟合奏的多维参数空间分区

Multi-dimensional parameter-space partitioning of spatio-temporal simulation ensembles

论文作者

Evers, Marina, Linsen, Lars

论文摘要

数值模拟通常用于理解给定时空现象的参数依赖性。采样多维参数空间并运行相应的模拟会导致大量时空模拟运行的集合。分析集合的一个主要目的是将多维参数空间划分(或段),以相似的行为进行模拟运行的连接区域。为了促进这种分析,我们为多维参数空间分区提出了一种新颖的可视化方法。我们的可视化基于超固定器的概念,该概念允许对参数空间段的范围和过渡的不隔离视图。对于参数空间中的导航,支持参数空间样本的2D嵌入(包括其段构件)的相互作用。参数空间分区以半自动方式生成,通过分析合奏模拟运行的相似性空间。类似模拟的簇诱导参数空间分区的片段。我们将参数空间分配的可视化链接到集合模拟的相似空间可视化,并将它们嵌入交互式视觉分析工具中,该工具支持针对分析参数空间分区的超级临时目标的时空模拟集合的所有方面的分析。然后可以在视觉上分析分区并进行交互精炼。我们在三个不同领域的案例研究中与专家评估了我们的方法。

Numerical simulations are commonly used to understand the parameter dependence of given spatio-temporal phenomena. Sampling a multi-dimensional parameter space and running the respective simulations leads to an ensemble of a large number of spatio-temporal simulation runs. A main objective for analyzing the ensemble is to partition (or segment) the multi-dimensional parameter space into connected regions of simulation runs with similar behavior. To facilitate such an analysis, we propose a novel visualization method for multi-dimensional parameter-space partitions. Our visualization is based on the concept of a hyper-slicer, which allows for undistorted views of the parameter-space segments' extent and transitions. For navigation within the parameter space, interactions with a 2D embedding of the parameter-space samples, including their segment memberships, are supported. Parameter-space partitions are generated in a semi-automatic fashion by analyzing the similarity space of the ensemble's simulation runs. Clusters of similar simulation runs induce the segments of the parameter-space partition. We link the parameter-space partitioning visualizations to similarity-space visualizations of the ensemble's simulation runs and embed them into an interactive visual analysis tool that supports the analysis of all facets of the spatio-temporal simulation ensemble targeted at the overarching goal of analyzing the parameter-space partitioning. The partitioning can then be visually analyzed and interactively refined. We evaluated our approach with experts within case studies from three different domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源