论文标题
与生成神经网络模型的纠缠
Entanglement Forging with generative neural network models
论文作者
论文摘要
量子和经典计算技术的最佳用途对于解决仅量子计算无法轻易解决的问题很重要。量子多体系统的基态问题就是这种情况。我们在这里表明,概率生成模型可以与量子算法一起使用,以设计混合量子量子经典的变性Ansätze,以纠缠较低的量子资源开销。差异ansätze在两个单独的量子寄存器上包含参数化的量子电路,以及一个经典的生成神经网络,可以通过学习整个系统的施密特分解来纠缠它们。根据可观察值的预期值所需的测量数量,提出的方法是有效的。为了证明其有效性,我们在一个和二维的横向场模型上进行了数值实验,以及在晶格上无旋转费米的T-V Hamiltonian等费米子系统。
The optimal use of quantum and classical computational techniques together is important to address problems that cannot be easily solved by quantum computations alone. This is the case of the ground state problem for quantum many-body systems. We show here that probabilistic generative models can work in conjunction with quantum algorithms to design hybrid quantum-classical variational ansätze that forge entanglement to lower quantum resource overhead. The variational ansätze comprise parametrized quantum circuits on two separate quantum registers, and a classical generative neural network that can entangle them by learning a Schmidt decomposition of the whole system. The method presented is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables. To demonstrate its effectiveness, we perform numerical experiments on the transverse field Ising model in one and two dimensions, and fermionic systems such as the t-V Hamiltonian of spinless fermions on a lattice.