论文标题

App-Net:基于辅助点的推动和拉动操作,以进行有效的点云分类

APP-Net: Auxiliary-point-based Push and Pull Operations for Efficient Point Cloud Classification

论文作者

Lu, Tao, Liu, Chunxu, Chen, Youxin, Wu, Gangshan, Wang, Limin

论文摘要

聚合邻居功能对于点云分类至关重要。在现有的工作中,不可避免地会选择云中的每个点作为多个聚合中心的邻居,因为所有中心将独立地从整个点云中收集邻居特征。因此,每个点必须重复参与计算,并在内存中产生冗余重复项,从而导致密集的计算成本和内存消耗。同时,为了追求更高的精度,以前的方法通常依赖一个复杂的局部聚合器来提取精细的几何表示,这进一步减慢了分类管道。为了解决这些问题,我们提出了一个新的线性复杂性的本地聚合器,用于点云分类,以应用为应用。具体来说,我们将辅助容器作为锚点介绍,以在源点和聚合中心之间进行交换。每个源点只能将其功能推到一个辅助容器,每个中心点仅从一个辅助容器中拉出特征。这避免了每个源点的重新计算问题。为了促进云点的局部结构的学习,我们使用在线正常估计模块提供可解释的几何信息以增强我们的应用程序建模能力。我们的构建网络比所有以前的基线都更有效,并具有明显的边距,同时仍消耗较低的内存。合成数据集和真实数据集的实验表明,APP-NET达到与其他网络的可比精度。它可以每秒处理超过10,000个样本,而单个GPU上的内存少于10GB。我们将在https://github.com/mcg-nju/app-net中发布代码。

Aggregating neighbor features is essential for point cloud classification. In the existing work, each point in the cloud may inevitably be selected as the neighbors of multiple aggregation centers, as all centers will gather neighbor features from the whole point cloud independently. Thus each point has to participate in the calculation repeatedly and generates redundant duplicates in the memory, leading to intensive computation costs and memory consumption. Meanwhile, to pursue higher accuracy, previous methods often rely on a complex local aggregator to extract fine geometric representation, which further slows down the classification pipeline. To address these issues, we propose a new local aggregator of linear complexity for point cloud classification, coined as APP. Specifically, we introduce an auxiliary container as an anchor to exchange features between the source point and the aggregating center. Each source point pushes its feature to only one auxiliary container, and each center point pulls features from only one auxiliary container. This avoids the re-computation issue of each source point. To facilitate the learning of the local structure of cloud point, we use an online normal estimation module to provide the explainable geometric information to enhance our APP modeling capability. Our built network is more efficient than all the previous baselines with a clear margin while still consuming a lower memory. Experiments on both synthetic and real datasets demonstrate that APP-Net reaches comparable accuracies to other networks. It can process more than 10,000 samples per second with less than 10GB of memory on a single GPU. We will release the code in https://github.com/MCG-NJU/APP-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源