论文标题

多跳推理的类型感知嵌入在知识图上

Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs

论文作者

Hu, Zhiwei, Gutiérrez-Basulto, Víctor, Xiang, Zhiliang, Li, Xiaoli, Li, Ru, Pan, Jeff Z.

论文摘要

现实生活中知识图(KGS)上的多跳推理是一个高度挑战的问题,因为传统的子图匹配方法无法处理噪声和缺失的信息。为了解决这个问题,最近已经引入了一种有希望的方法,该方法基于将逻辑查询和kgs共同嵌入到一个低维空间中以识别答案实体。但是,现有的提案忽略了KGS中固有可用的关键语义知识,例如类型信息。为了利用类型信息,我们提出了一种新颖的类型感知消息传递(TEMP)模型,该模型可以增强查询中的实体和关系表示形式,并同时改善概括,演绎和归纳推理。值得注意的是,Temp是一种插件模型,可以轻松地将其纳入现有的基于嵌入的模型中以提高其性能。在三个现实世界数据集上进行了广泛的实验证明了温度的有效性。

Multi-hop reasoning over real-life knowledge graphs (KGs) is a highly challenging problem as traditional subgraph matching methods are not capable to deal with noise and missing information. To address this problem, it has been recently introduced a promising approach based on jointly embedding logical queries and KGs into a low-dimensional space to identify answer entities. However, existing proposals ignore critical semantic knowledge inherently available in KGs, such as type information. To leverage type information, we propose a novel TypE-aware Message Passing (TEMP) model, which enhances the entity and relation representations in queries, and simultaneously improves generalization, deductive and inductive reasoning. Remarkably, TEMP is a plug-and-play model that can be easily incorporated into existing embedding-based models to improve their performance. Extensive experiments on three real-world datasets demonstrate TEMP's effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源