论文标题

一种用于求解基于伍德伯里身份的方程线性系统的近期量子算法

A near-term quantum algorithm for solving linear systems of equations based on the Woodbury identity

论文作者

O'Malley, Daniel, Henderson, Jessie M., Pelofske, Elijah, Greer, Sarah, Subasi, Yigit, Golden, John K., Lowrie, Robert, Eidenbenz, Stephan

论文摘要

用于求解方程线性系统的量子算法引起了兴奋,因为涉及的潜在加速以及在许多应用中求解线性方程的重要性。但是,应用这些算法可能具有挑战性。 Harrow-Hassidim-lloyd算法及其改进需要适合容忍故障硬件的复杂子例程,例如Hamiltonian模拟,使其不适合当前硬件。另一方面,各变化算法涉及昂贵的优化环,这些循环可能容易出现贫瘠的高原和局部优化。我们描述了一种量子算法,用于求解避免这些问题的方程式线性系统。我们的算法基于伍德伯里的身份,该身份在分析上描述了矩阵的倒数,该基质是对另一个(易于可变的)矩阵的低级别修饰。这种方法仅利用基本的量子子例程,例如Hadamard测试或交换测试,因此非常适合当前硬件。没有优化循环,因此贫瘠的高原和当地的Optima不会出现问题。身份的低级方面使我们能够有效地传输信息到量子计算机。这种方法可以在当前硬件上产生准确的结果。作为证据,我们估计了一种内部产品,该产品涉及使用IBM的奥克兰量子计算机的超过1600万个方程的系统,其中有2%的误差。据我们所知,任何大型方程式都没有在量子计算机上求解到这种准确性。

Quantum algorithms for solving linear systems of equations have generated excitement because of the potential speed-ups involved and the importance of solving linear equations in many applications. However, applying these algorithms can be challenging. The Harrow-Hassidim-Lloyd algorithm and improvements thereof require complex subroutines suitable for fault-tolerant hardware such as Hamiltonian simulation, making it ill-suited to current hardware. Variational algorithms, on the other hand, involve expensive optimization loops, which can be prone to barren plateaus and local optima. We describe a quantum algorithm for solving linear systems of equations that avoids these problems. Our algorithm is based on the Woodbury identity, which analytically describes the inverse of a matrix that is a low-rank modification of another (easily-invertible) matrix. This approach only utilizes basic quantum subroutines like the Hadamard test or the swap test, so it is well-suited to current hardware. There is no optimization loop, so barren plateaus and local optima do not present a problem. The low-rank aspect of the identity enables us to efficiently transfer information to and from the quantum computer. This approach can produce accurate results on current hardware. As evidence of this, we estimate an inner product involving the solution of a system of more than 16 million equations with 2% error using IBM's Auckland quantum computer. To our knowledge, no system of equations this large has previously been solved to this level of accuracy on a quantum computer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源